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ABSTRACT 

This research used the Coupled Ocean/Atmosphere Mesoscale Prediction System 

(COAMPS) to examine the physical processes affecting sea fog development near 

Kunsan AB.  The simulated sea fog event occurred from 30 March to 02 April 2011 and 

was validated using observations.  Model results were analyzed from three perspectives. 

A trajectory analysis examined the evolution of the wind, air-sea interaction, and 

thermodynamic properties of the air column prior to the sea fog formation; a time 

variation of similar properties at fixed locations investigated the evolution of the fog for 

the entire life cycle of the fog event; and a vertical cross-section through Kunsan AB 

revealed the spatial variability and the effects of coastal circulations.  Finally, evaluation 

of a current forecast tool, Fog Stability Index (FSI), was conducted to determine its 

adequacy.   

 Results from this analysis indicated strong influence of the adjacent sea on the fog 

development and maintenance at Kunsan AB.  For the fog event studied in this research, 

fog initially developed as nocturnal fog over land, but was later maintained by advection 

from the sea.  Strong cooling within the fog layer was present resulting in significant 

surface-air temperature difference, likely associated with radiation cooling.  Radiative 

cooling, however, did not result in turbulent mixing due to the shallowness of the fog 

layer and the stable thermal stratification.  The presence of the fog layer along the coast 

appeared to modify the coastal circulation, which was also an important component in 

introducing moisture into Kunsan AB for fog formation/maintenance.  Dissipation of the 

fog was dominated by synoptic changes.  A modified version of FSI is suggested based 

on results from this study.    

  

 

 

 

 

 

 

 



vi 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 



vii 

 

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A.  SEA FOG FORECAST ISSUE AT KUNSAN AIR BASE ..........................1 
B.   MOTIVATION AND OBJECTIVES ............................................................3 
C. SCOPE OF RESEARCH ................................................................................5 

II. REGIONAL BACKGROUND AND LITERATURE REVIEW .............................7 
A. GEOGRAPHICAL AND CLIMATOLOGICAL DESCRIPTION OF 

THE YELLOW SEA REGION ......................................................................7 
1.   Korean Geography...............................................................................7 
2. The Yellow Sea Bathymetry ................................................................8 

3.  Climatology of Atmospheric Conditions of the Region ....................9 

4.  Climatology of the Oceanic Currents in the Yellow Sea ................11 

B.   PHYSICS OF SEA FOG AND ITS FORMATION AND 

DISSIPATION PROPERTIES .....................................................................13 

1.  Sea Fog Formation Mechanisms.......................................................14 
2. Sea Fog Dissipation Mechanisms ......................................................18 

C. SEASONAL SEA FOG VARIATION IN THE YELLOW SEA ..............18 

III. COAMPS AND COAMPS SIMULATIONS OF FOG EVENTS .........................21 
A. INTRODUCTION TO COAMPS ................................................................21 

B. OBSERVATIONS OF FOG EVENTS AND CASE SELECTION ...........22 
1.  Kunsan AB METAR Observations ..................................................22 

2.  Kwangju AB (RKJJ) Upper Air Soundings ....................................23 
3. Chilbaldo Buoy Station Measurements ...........................................24 

4. Regional Satellite Image and Surface Analysis ...............................25 
C. COAMPS MODEL SET-UP FOR KUNSAN FOG SIMULATIONS ......28 

1. Model Domain ....................................................................................28 
2. Simulation Setup and Model Output ...............................................29 

IV. RESULTS ...................................................................................................................31 

A. SIMULATED FOG EVENT AND MODEL VALIDATION ....................31 
1. Simulated Fog Formation in the Model Domain ............................31 

2. Validation of Fog Forecast at Kunsan .............................................33 
B.   BOUNDARY LAYER EVOLUTION LEADING TO FOG 

FORMATION ................................................................................................35 
1. Coastal Ocean Location .....................................................................38 
2. Inland Location ..................................................................................46 

C. EVOLUTION OF FOG FORMATION AND MAINTENANCE AT   

SPECIFIC LOCATIONS ..............................................................................50 

1. Coastal Ocean Location .....................................................................51 
2.  Kunsan Location ................................................................................52 
3. Inland Location ..................................................................................54 

D. SPATIAL VARIABILITY IN STAGES OF FOG DEVELOPMENT .....56 



viii 

 

1. Initial Fog Formation ........................................................................57 

2. Sustained Sea Fog ..............................................................................59 
3. Sea Fog Dissipation ............................................................................62 

E. FOG STABILITY INDEX EVALUTION ...................................................64 

V. CONCLUSIONS, RECOMMENDATIONS, AND FUTURE RESEARCH ........69 

LIST OF REFERENCES ......................................................................................................73 

INITIAL DISTRIBUTION LIST .........................................................................................77 

  



ix 

 

LIST OF FIGURES 

Figure 1. Map of ROK – red star marks Kunsan AB (After Microsoft 2011; 

available online at http://www.bing.com/maps/) ...............................................2 
Figure 2. ROK Topography– red star marks Kunsan AB (available online at           

http://en.wikipedia.org/wiki/File:South_Korea_Topography.png ) ..................8 
Figure 3. Bathymetry of the Yellow Sea (From Apel 2004) .............................................9 

Figure 4. Mean Polar Front Positions (From Giese 2004) ..............................................10 
Figure 5. Major currents of the YS region for summer (right) and winter  (left).           

1, Kuroshio; 2, Kuroshio Countercurrent; 3, Tsushima Warm Current;          

4, Yellow Sea Warm Current; 5, Taiwan Warm Current; 6, Yellow Sea   

Coastal Current; 7, Taiwan Coastal Current; 8, Korean Coastal Current;      

9, Yellow Sea Cold Water; and 10, Cheju Cyclonic Gyre. (From Mask and     

O’Brien 1998) ..................................................................................................13 
Figure 6. Seasonal variation of mean frequency of sea fog occurrence YS   (west 

sea), Sea of Japan (east sea), and the East China Sea (south sea)  (From 

Cho et al. 2000)................................................................................................20 
Figure 7. Time series analysis of Kunsan AB’s visibility and surface wind bards 

during the time period of the significant fog event from 30 March - 01 Apr 

2011 (visibility less than 1,000 m is classified as fog). ...................................23 
Figure 8. Sounding data for 31Mar/00Z at Kwangju AB.  Notice the shallow area of 

saturation near surface with a very strong LL inversion, which is 

indicative of fog. (After University of Wyoming at 

http://weather.uwyo.edu/upperair/sounding.html) ...........................................24 
Figure 9. Time series of the buoy data for the buoy station, Chilbaldo from 31 

Mar/00KST to 02Apr/00KST.  (The circled data shows periods of 

favorable sea fog formation.) - (After http://www.kma.go.kr/) .......................25 

Figure 10. Satellite image of the Korea/Japan region for 31 March/02Z (11 KST).  

(After http://weather.is.kochi-u.ac.jp/archive-e.html). ....................................26 
Figure 11. Analyzed surface weather chart for 31 March/00Z with surface wind 

direction (indicated by bold, black arrows) around the center of the high 

pressure system over the YS. (After ROKAF 2011) .......................................27 
Figure 12. Analyzed 500 mb weather chart for 31 March/00Z with 500 mb flow 

(indicated by a bold, black arrow) coming out of China into the YS. (After 

ROKAF 2011) ..................................................................................................27 
Figure 13. COAMPS model domains (red boxes) and grid spacing used for sea fog 

case study. Kunsan AB, the Chilbadao buoy station, and Kwangju AB are 

denoted by the red, black, and yellow dots, respectively. ................................28 

Figure 14. Forecast period of each of the six COAMPS simulations and the “best 

forecast” time that represents the most accurate period from each model 

run (the thick black lines). Forecast from all the 'best forecast' period from 

the time series of COAMPS simulations to be used in the analyses (30 

Mar/06Z to 02 Apr/05Z). .................................................................................30 



x 

 

Figure 15. 2-D 10 m qc.  (a-f) shows qc (colored contours) at selected times to 

illustrate fog evolution from formation through dissipation in the area of 

interest.  The color bar indicates the magnitude of qc.  The black arrows 

show the 10 m wind speed and direction with the length of the arrow 

indicating the magnitude of the winds. Time of results is shown in the title 

of each figure. ..................................................................................................32 
Figure 16. Points of interest for the time series qc plots.  a) the location of the points.    

b) - d) the variation in qc from 30 Mar/06Z - 2 Apr/05Z at those specific 

points.  c) compares the qc for Kunsan to the surface visibility report from 

the automated sensor with dashed blue line indicating the fog threshold. .......34 
Figure 17. Back trajectory from start of fog at each point. a) point O, b) point L, c) 

Kunsan.  The arrows represent the wind vectors at 10 m above the surface 

at the start of the fog.  (After University of Melbourne at 

http://www.earthsci.unimelb.edu.au/trajectories/trajhome.htm, Noon and 

Simmonds 1999). .............................................................................................37 

Figure 18. Point O - The trajectory of the air column beginning to the west (red star) 

and ending at the point of interest when the fog began (yellow star). .............38 

Figure 19. Vertical cross-section plots along the trajectory ending at point O from 30 

March/10Z to 30 March/22Z.  a) qc; b) potential temperature with BL 

height; c) qv; d) TKE.  Wind barbs represent the wind speed and direction 

of the flow in knots. .........................................................................................39 
Figure 20. Surface variables along the point O trajectory from 30 March/10Z to 30 

March/22Z. a) 10 m dew-point temperature and 10 m air temperature; b) 

LHF and SHF; c) SST and 10 m air temperature; d) 10 m qc and qv. ..............42 
Figure 21. Kunsan AB - The forward trajectory path of the air beginning to the west 

(red star) and ending at the point of interest when the fog began (yellow 

star). .................................................................................................................43 
Figure 22. Contour plots along the Kunsan AB trajectory from 30 March/06Z to 30 

March/18Z.  a) qc; b) potential temperature with BL height; c) qv; d) TKE.  

Wind barbs represent the wind speed and direction of the flow in knots.  

The height level is up to 330m. ........................................................................44 

Figure 23. Surface variables along the Kunsan trajectory from 30 March/06Z to 30  

March/18Z. a) 10 m dew-point temperature and 10 m air temperature; b) 

LHF and SHF; c) SST and 10 m air temperature; d) 10 m qc and qv. ..............45 
Figure 24. Point L - The forward trajectory path of the air beginning to the west (red 

star) and ending at the point of interest when the fog began (yellow star). .....47 
Figure 25. Contour plots along point L trajectory from 30 March/06Z to 30 

March/15Z.  a) qc; b) potential temperature with BL height; c) qv; d) TKE.  

Wind barbs represent the wind speed and direction of the flow in knots.  

The height level is up to 330m. ........................................................................48 

Figure 26. Surface variables along the Kunsan trajectory from 30 March/06Z to 30  

March/15Z. a) 10 m dew-point temperature and 10 m air temperature; b) 

LHF and SHF; c) 10 m qc and qv. Comparison of the air temperature vs. 

SST was omitted since parcel was primarily over the land. ............................49 



xi 

 

Figure 27. The contour plots and surface plot time series analysis from 30 March/06Z 

- 02 April/05Z over point O in the YS due west of Kunsan AB. a) qc; b) 

potential temperature with BL height;  c) SST/10 m air temperature; d) 

surface LHF/SHF. ............................................................................................51 

Figure 28. The contour plots and surface plot time series analysis from 30 March/06Z 

- 02 April/05Z over Kunsan AB along the west coast of the Korean 

Peninsula. a) qc; b) potential temperature with BL height;  c) SST/10 m air 

temperature; d) surface LHF/SHF. ..................................................................53 
Figure 29. The contour plot and surface plot time series analysis from 30 March/06Z 

- 02 April/05Z over point L on the Korean Peninsula due east of Kunsan 

AB. a) qc; b) potential temperature with BL height; c) surface LHF/SHF. .....55 
Figure 30. Map of areas used for cross section .................................................................57 
Figure 31. The four plots represent the vertical cross section (a and b) and near 

surface properties (c and d) along the line described in Figure 16 at 30 

March/18Z. a) cloud water, qc;  b) potential temperature;  c) surface 

LHF/SHF;  d) SST/10 m air temperature.  Wind barbs on (c and d) 

represent 10 m wind speed and direction.  The red star at 147 km shows 

the land/sea boundary along the cross section with land surface to the 

right.  SST in d) is only up to the land-sea boundary. .....................................58 
Figure 32. Same as in Figure 31, except at 31 March/09Z. ..............................................60 

Figure 33. Same as in Figure 31, except for 31 March/18Z. .............................................62 
Figure 34. Same as in Figure 31, except for 01 April/18Z ................................................63 

Figure 35. Time series analysis from the points of interest comparing the qc from the 

generated FSI output.  a) point O;  b) Kunsan;  c) point L.  The red dashed 

line indicates the threshold between the high and moderate  probability of 

fog.  Below the line is high likelihood and above the line is moderate to 

low probability. ................................................................................................67 
Figure 36. Time series analysis from the points of interest comparing the qc from the 

generated FSI output using the modified equation.  a) point O;  b) Kunsan;  

c) point L.  The red dashed line indicates the threshold between the high 

and moderate  probability of fog.  Below the line is high likelihood and 

above the line is moderate to low probability. .................................................68 
 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 

 

  



xiii 

 

LIST OF TABLES 

Table 1. Kunsan AB OCDS (After Air Force Combat Climatology Center 

[AFCCC]  2005) ..............................................................................................11 
Table 2. Classification of Sea Fog (After Wang 1985) ..................................................15 
Table 3. Variables used in the analyses and their corresponding units, names in 

COAMPS output, and output levels.  The * denotes variables calculated 

from other direct outputs. .................................................................................30 
Table 4. Location destination and time period for back trajectory analyses based on 

COAMPS forecast winds.  The ocean and the land points will be referred 

to as point O and L, respectively. ....................................................................35 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

 

LIST OF ACRONYMS AND ABBREVIATIONS 

8 OSS/OSW 8th Operations Support Squadron, Weather Flight 

AB     air base  

AFCCC Air Force Combat Climatology Center  

AFWA  Air Force Weather Agency 

BL   boundary layer  

CART   classification and regression tree 

CCN   cloud condensation nuclei 

COAMPS        Coupled Ocean/Atmosphere Mesoscale Prediction System  

D  dimension 

DPT   dew-point temperature 

ECS  East China Sea 

F  Fahrenheit 

FSI   Fog Stability Index 

GMT  Greenwich Mean Time 

km  kilometers 

kts  knots 

LHF   latent heat flux 

LL  low level 

KST  Korean standard time 

m   meters 

MABL  marine atmospheric boundary layer  

mb  millibars 

METARs  Aviation Routine Weather Reports  

MVOI   Multivariate Optimum Interpolation 

NOGAPS Navy Operational Global Atmospheric Prediction System  

NRL   Naval Research Laboratory 

OCDS  Operational Climatic Data Summary 

OWS  Operational Weather Squadron 



xvi 

 

PBL  planetary boundary layer 

qc  cloud mixing ratio 

qv  water vapor mixing ratio 

RH   relative humidity 

ROK  Republic of Korea 

ROKAF  Republic of Korea Air Force 

ROT   rule of thumb 

SHF   sensible heat flux  

SPECIs  Aviation Selected Special Weather Reports  

SST   sea surface temperatures  

TKE  turbulent kinetic energy   

USAF  United States Air Force 

USN  United States Navy  

UTC   coordinated universal time  

WRF  Weather Research and Forecasting  

WS  weather squadron  

WV  water vapor 

YS  Yellow Sea  

Z  Zulu time   

 

 

 

 

 

 

 

 

 

 

 



xvii 

 

ACKNOWLEDGMENTS 

 

This process has been the most enjoyable, and at times, the most daunting; 

however, I have a few people to thank for making it more of the former rather than the 

latter.  Without this person I would not have been able to proceed with some of my ideas.  

Professor Qing Wang has guided me towards a very structured and coherent path, 

enabling me to succeed in this endeavor.  I thank her for all of her guidance and advice 

throughout this process.   

In addition, I would like to thank the two masterminds behind the COAMPS 

model data, Dr. Shouping Wang and Ms. Hway-Jen Chen.  With their knowledge and 

expertise on the COAMPS model, they provided me with steadfast results.  

Also, I would like to thank Professor Ian Simmonds from The University of 

Melbourne, Australia, School of Earth Sciences and the math department at the College 

of Staten Island who provided us with a very useful Lagrangian back trajectory code 

enabling us to depict the simulation wind in a way that allowed us to view the fog from 

different vantage points.     

Next, I would like to thank my classmates, colleagues, and friends for providing 

me with insight and ideas on how to proceed when I was in a bind.  Their advice and 

information was definitely appreciated and needed.  Also, thank you to members of the 8 

OSS/OSW, 17 OWS and the 607 WS for giving me the necessary data and information 

needed to successfully complete this project.  They gave me a great understanding of the 

environment, Korean Peninsula, in which this thesis was centered around.  

Last, but certainly not least, I would like to thank my loving and encouraging 

family for their constant support throughout this long process.  Without them, I would 

certainly not be as dedicated or motivated. So to say the least, they are why I do what I 

do.  I love you and appreciate all you have done for me.  Thank you! 

 

        Adam W. DeMarco 



xviii 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 

 



1 

 

I. INTRODUCTION  

A.  SEA FOG FORECAST ISSUE AT KUNSAN AIR BASE 

 Sea fog has always caused havoc throughout the oceans around the world.  For 

many years, this weather phenomenon has plagued United States Air Force (USAF) air 

bases (ABs) near and around the Republic of Korea (ROK), due to its difficult 

predictability.  Because of its low visibility, aircraft missions have been adversely 

affected causing ground aborts and, in some cases, inability to complete military 

operations.  For instance, Kunsan AB, ROK (Figure 1) has been dealing with the forecast 

challenges associated with advection sea fog since the opening of the base in 1938 when 

Japanese forces, occupying Korea, built a base near the town of Gunsan for fighter-

interceptor aircraft.  It was not until 1950, when the U.S. recaptured it from the North 

Koreans during the Korean conflict and decided to make it a permanent AB 

(GlobalSecurity.org).   

 Within the last decade, forecasters assigned to the 8th Operations Support 

Squadron Weather Flight (8 OSS/OSW) along with the 17th Operational Weather 

Squadron (17 OWS) located at Hickam AB, Hawaii have been struggling with this 

forecast problem and have requested additional research to be completed to analyze this 

phenomenon.    

 In 2004, Capt Danielle Lewis attacked this problem using ten years of surface 

observations, upstream upper air data, sea surface temperatures (SST) over the Yellow 

Sea (YS), and data from a 2.5 degree resolution Navy Operational Global Atmospheric 

Prediction System (NOGAPS) model, along with a classification and regression tree 

(CART) statistical analysis technique which would help determine predictors of sea fog.   

The initial outcome of this statistical analysis created forecast guidelines to aid 

forecasters in predicting the evolution of sea fog events and advection over the area 

(Lewis 2004).  However, with Capt Lewis’ research, the 17 OWS (primarily responsible 

for forecasts throughout the ROK) was unable to produce a useful rule of thumb (ROT) 

to use for sea fog forecasting.  Perhaps the main concern with this approach was her use 
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of a very coarse resolution model when trying to describe and analyze a mesoscale 

phenomenon, such as advection sea fog.  In addition, a high false alarm rate was 

identified by using her results during the sea fog season.    

 It is very difficult for a low resolution model to resolve fog features that are only a 

few 100 kilometer (km) wide, and at most, 2 km deep.  Therefore, with new and 

improved models and the ability to look at the environment with higher resolution and 

more accuracy, I have elected to take on this problem again to help improve on this 

forecast challenge, ultimately saving money, time, and military resources throughout the 

region.     

  

 

Figure 1.    Map of ROK – red star marks Kunsan AB (After Microsoft 2011; available 

online at http://www.bing.com/maps/)                                                     



3 

 

 The intentions of this research were not to utilize her techniques, but to simply 

examine a particular fog case by using the Coupled Ocean/Atmosphere Mesoscale 

Prediction System (COAMPS) model simulation and scrutinize it from under a 

“microscope” (so to speak) to expose the details of the formation and dissipation 

processes that are unique to advection sea fog in the YS.  Along the way, a description of 

the physical processes which are critical to advection sea fog development will be shown.  

This research will also include a thorough examination of some recent studies of sea fog 

in and around the YS and a discussion of the environmental features around the YS that 

aid in the development of sea fog.  Finally, looking through the life cycle of a specific 

event of a recent sea fog case based on the COAMPS model simulation from 30 March 

through 02 April 2011, it will become apparent which critical parameters are key to the 

development and dissipation of sea fog in the YS.   

B.   MOTIVATION AND OBJECTIVES 

 The 17 OWS, along with the 8 OSS/OSW, have been in constant struggle with 

their inability to accurately forecast sea fog.  In fact, I recently spoke to two members of 

the 17 OWS training flight to determine their current forecast techniques for forecasting 

sea fog.  And here were their responses:  

I talked to several sets of forecasters for Kunsan and found out that they 

most often look at multispectral satellite imagery to determine whether sea 

fog is a possibility.  If fog shows up (in the satellite imagery) they do an 

evaluation of current and forecast winds with meteograms, synoptic-scale 

model charts and occasionally alphanumerics to see if it will roll into the 

base or not.  Other than that, they generally do not appear to use ROTs or 

any other specific training (Alford 2011, personal communications).   

The other correspondence was with a seasoned forecaster for the Korean Peninsula who 

revealed several teaching documents, a list of variables, Fog Stability Index (FSI), and 

model output to consider when examining whether or not to forecast sea fog for the 

region.  Here was some additional insight he provided when forecasting sea fog.  

Consider measuring wind direction (more often southerly) and speed.  

Also, look at the dew point temperature relative to SST.  Also, 

environmental stratification is an important consideration—low level (LL) 
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stability to any synoptic forcing.  Sea fog is most common from March-

July.  Strong LL jet (pre-frontal) during this timeframe needs to be 

considered and position of the sub-tropical ridge is also important.  

Finally, Air Force Weather Agency's (AFWA) Weather Research and 

Forecasting (WRF) 2-D (dimension) cloud model is pretty good to use. 

(Headland 2011, personal communication).    

So, as you can see, the forecasters have some indication of what to look for when 

forecasting for sea fog.  However, due to the non-existence of a long term fog evaluation 

and a high turnover rate of forecasters, this forecasting problem remains a challenge and 

an improvement to this issue must be obtained from this research.  

 Even though it is a difficult forecast challenge, with the proper understanding of 

the physical properties and conditions associated with sea fog, an accurate forecast could 

be made to predict this event with an adequate lead time.  Also, since this event has 

caused many ‘headaches’ for entire military operations, to include the forecasters, it is 

imperative that additional research be conducted. With successful results, the hope is to 

advance USAF mission capability by improving prediction of the onset of advection sea 

fog along the ROK by providing many hours of lead time for such events.   

 Before discussing more details, it is important to understand how the AF views 

fog and how they define it in their instructions.  According to the AF manual, AFMAN 

15–111, “Fog is a visible aggregate of minute water particles (droplets) that are based at 

the earth’s surface and reduces the horizontal visibility to less than 5/8 statue miles 

(1,000 meters (m)) and does not fall to the ground as drizzle or rain.” (AFMAN 2009).  

Therefore, in order for the AF to classify restricted visibility as fog, the observer must not 

be able to see beyond 1 km.  This reduction in visibility is the primary reason for many 

military operations to come to a standstill and frustrations to grow across in the military 

community.  A vast majority of the flying training areas are in the range of the ominous 

sea fog, and at anytime, can be adversely affected by the rapid developing sea fog.  

Therefore, it is the goal of this thesis to take the knowledge that is acquired from this 

research and apply it to improving the forecasters understanding of sea fog and how they 

can properly inform the mission planners in order for them to mitigate risk and save time, 

money, and resources. 
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 The primary focus will be on the development and dissipation of the sea fog 

throughout the region.  This weather event occurs all year round, but is at its peak 

frequency from March through August due to contrast in air and sea temperature and the 

high concentration of water vapor (WV) throughout the region.  In addition, advection 

fog encompasses approximately 80 percent of all sea fogs over the YS (Zhou and Du 

2010).  More specifically, the process which is the most dominant over this region is the 

cooling of the warm, moist air as it advects northward from the warmer, tropical air 

during the spring and summer months when the SSTs are still relatively cool.  This type 

of sea fog, referred to as advection cooling fog, mostly occurs when the SST<air 

temperature and the air temperature drops to at or below the dew-point temperature 

causing saturation or super-saturation and a surface based cloud to form (Wang 1985).   

In addition, strong tidal mixing (cold water upwelling) and other air-sea interactions are 

important factors associated with the formation of advection fog over the YS (Cho et al. 

2000).  These, along with a few other classifications of sea fog, will be described in more 

detail in later sections. 

C. SCOPE OF RESEARCH 

 The intent of this research is to inform the reader of the details surrounding the 

formation, maintenance, and dissipation of sea fog.  This paper will first review the 

geographical, climatological, and bathymetric influences surrounding the YS to include, 

ocean floor depths and seasonal ocean currents and atmospheric conditions.  Next, it will 

describe the physical processes which are critical for the numerous types of sea fog 

formation by examining past research literature and studies specifically focusing on this 

region of the world.  Thirdly, an explanation of the details of the COAMPS model and 

why it was chosen for this study will be included.  Also, this paper will explain the 

simulation for the case during a significant sea fog event from 30 March through 02 April 

2011 and show how the atmosphere changed as the air advected over the base.  Through 

this simulation, various variable outputs were produced that are considered important for 

sea fog formation, such as:  WV and liquid cloud mixing ratios (qv and qc), SST, air 

temperature, dew-point temperature (DPT), relative humidity (RH), potential 
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temperature, surface latent heat flux (LHF), surface sensible heat flux (SHF), turbulent 

kinetic energy (TKE) and wind speed and direction.  With these variables being analyzed 

from numerous locations and along many paths and trajectories, it will soon become 

apparent what variables lead to the formation and ultimate dissipation of sea fog.  From 

these results, the key ingredients will be broken down to show how the formation and 

dissipation of sea fog changes over time.  Finally, an analysis of the FSI will be 

conducted to validate the quality and accuracy of the tool with the intent to make any 

improvements to the index to aid the forecasters in a more accurate forecast for sea fog 

formation.   
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II. REGIONAL BACKGROUND AND LITERATURE REVIEW 

A. GEOGRAPHICAL AND CLIMATOLOGICAL DESCRIPTION OF THE 

YELLOW SEA REGION 

1.   Korean Geography  

  Kunsan AB, ROK is located on the southwest coast of the Korean Peninsula along 

the YS only 9 m above sea level.  This region is directly surrounded by numerous hills 

which do not exceed more than 50 m high (Figure 2).  Even though this terrain is not very 

high, isolated clouds can form due to orographic lift through the year.  Approximately 50 

to 100 miles to the east and north respectively are two extensive mountain ranges which 

reach maximum altitude of 3,000 feet (GlobalSecurity.org).  This type of topography 

tends to be favorable for advective sea fog to flow over base and get trapped by the 

terrain to the east and north.  Due to Kunsan AB’s close proximity to the YS, moisture is 

readily available throughout the fog season.  Also, since the fog season occurs during an 

increase in precipitation, moisture becomes abundant from the increased rainfall.  

Another source of moisture for the region comes from the Kum river, which flows from 

the northeast bringing cool, fresh water into the YS and altering the thermal conditions 

and salinity concentrations of the YS immediately off the ROK.   

  In addition to the moisture sources available, cloud condensation nuclei (CCN), 

which aids in the collection of water vapor and enables the water vapor molecules to 

easily form liquid water are available throughout the year.  CCN play a very important 

role in the formation of sea fog (Wang 1985).  They can be abundant throughout the 

region due to pollution being advected in from China by Yellow Wind during late winter 

and early spring.  Yellow wind is dust that originates in the Gobi Desert and is carried 

south by cold fronts that move from the northwest.  The dust spreads over Korea and can 

lower visibility, due to the hazy conditions, for as long as 24 hours.  Another source of 

CCN is generated locally by smoke and ash from burning fields primarily in the late 

summer and fall (Giese 2004).   
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Figure 2.         ROK Topography– red star marks Kunsan AB (available online at          

 http://en.wikipedia.org/wiki/File:South_Korea_Topography.png )  

2. The Yellow Sea Bathymetry  

  Another geographic factor that effects the development of sea fog is the 

bathymetry of the YS.  The YS is a shallow sea that lies between northeastern China and 

the Korean Peninsula, with depths near the center of the sea in excess of 60 to 80 m 

(Figure 3).  The shallowness of the sea leads to variable tidal forcing with peak tidal 

currents along the shores of southwestern Korea that reach 4.4 m∙s
-1

.  Like the river 

runoff, as mentioned in the previous section, strong tidal forcing can lead to variations in 

the thermal structure and movement of the sea throughout the year making it difficult to 

predict the SST structure in the proximity of the shoreline.  These events contribute to the 

enhancement of fog development and sustainment and are crucial to understand. 
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3.  Climatology of Atmospheric Conditions of the Region 

    When forecasting for sea fog it is also important to understand the climatology 

associated with the ocean currents and the atmospheric synoptic patterns.  First, 

examining the atmospheric climatology for the peak sea fog season (March–August), a 

main feature that affects the seasonal weather over the ROK is the polar front (Figure 4). 

This surface polar front, called the Bai-U front, migrates from south of Taiwan in the 

winter to north of ROK in the summer.  The front is formed as cool, moist northeasterly 

flow from the semipermanent Okhotsk high clashes with the warm, moist southwesterly 

flow from the Pacific high (Giese 2004).  As the front moves north with increased solar 

radiation over the northern hemisphere, the region experiences its rainy season.  When 

there are variations in the frontal placement and high pressure dominates, foggy 

conditions likely prevail due to the abundant moisture and warmer air temperatures 

relative to the SST.   

 

Figure 3.   Bathymetry of the Yellow Sea (From Apel 2004) 
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  Table 1 is an excerpt from the Operational Climatic Data Summary (OCDS) for 

Kunsan AB that shows the seasonal climatology values for surface temperatures, rainfall, 

mean RH, and surface winds during the fog season.  As you might expect, the mean 

surface temperature increases throughout the season, from the middle 50s in April to the 

lower 80s by the end of August.  Also, because of the northern migration of the polar 

front and the increase in rainfall, the mean RH increases throughout the period.  

However, it is important to note that the maximum RH throughout the day occurs during  

the morning hours at which time Kunsan AB experiences it highest probability of fog, 

either sea or radiation based.  Another interesting fact about the seasonal climatology 

from the peak sea fog season is the mean surface wind direction.  For the majority of the 

period the winds have a westerly component, which tends to advect in additional 

moisture off of the YS aiding in the increase in moisture throughout the region. 

 

 

Figure 4.   Mean Polar Front Positions (From Giese 2004) 
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KUNSAN AB CLIMATOLOGY         

Temperature (F) April May June July August 

Max 59 69 76 83 86 

Mean 53 62 70 78 80 

Min 46 56 65 74 75 

  
     Rainfall (inches) 
     Max 9.3 8.6 12.8 22 25.8 

Mean 3.8 3.7 5.6 9.9 8.2 

Min 0.9 0.4 0.7 2.9 1.1 

  
     Mean Relative Humidity (%) 
     6 KST (AM) 84 86 88 89 88 

14 KST (PM) 65 67 72 76 71 

  
     Surface Wind  
     Direction NW W W SW E 

Speed (kts) 10 7 7 9 5 

Table 1.   Kunsan AB OCDS (After Air Force Combat Climatology Center [AFCCC]  

2005) 

4.  Climatology of the Oceanic Currents in the Yellow Sea 

  In addition to the atmospheric climatology, the oceanic currents that dominate the 

region can vary significantly from season to season leading to a more definitive time 

period of sea fog formation.  Specifically, advection cooling fog is closely related to sea 

currents and their movements (Wang 1985).  In addition, tidal mixing is responsible for 

the cooling of the ocean floor shelf regions in the YS, contributing to a high frequency of 

sea fog occurrence near the western Korean coast (Zhang et al. 2009).  So, it is 

imperative to have a good understanding of the seasonal variations of the currents 

throughout the YS.  The YS undergoes many different current flows throughout the year.  

In Figure 5, there are some apparent differences between the ocean currents during the 

summer and winter months.  The most dominate oceanic current throughout the region is 

the Kuroshio current, which brings warm ocean water into the YS as it travels northward 

at speeds of 0.4 m∙s
-1

 or greater (Mask and O'Brien 1998).  As the current interacts with 

the landmasses a number of currents branch off of the Kuroshio and flows out into the 

Western Pacific, through the Korean Strait, or curves northwestward into the YS.   
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  Within the YS, there are four notable currents that can ultimately affect the ability 

of sea fog formation.  First, the YS Warm Current, with speeds of .25 m∙s
-1

, is the main 

branch of the Kuroshio that provides a warming of the YS throughout the year, but in the 

summer the current may not penetrate into the YS basin causing less warming to occur.  

Another significant current is the Korean Coastal Current which travels southward during 

the year and hugs the west coast of Korea.  This cold current is much stronger in the 

winter, while during the summer it weakens.  The YS Coastal Current is another current 

which dominates the YS in the summer as it travels southward along the Chinese coast.  

This current joins with the Yangtze River runoff and flows eastward towards the southern 

tip of the Korean Peninsula.  The sea surface that experiences this cold current is usually 

the forming source of advection cooling fog.  More specifically, the regions of warm and 

cold currents with larger thermal gradients have a greater chance of sea fog formation 

(Wang 1985).  The final region of SST variation occurs in the summer as the river runoff 

from northeastern China creates a significant pool of cooler water in the central YS 

region.  The YS Cold Water generates tight horizontal sea surface temperature gradients 

between the warm flowing currents from the south and this cooler pool of water to the 

north (Mask and O'Brien 1998).  The SST gradient that forms during the summer makes 

it difficult to predict the thermal structure of the YS and the potential formation of sea 

fog.  Also, another factor that makes it difficult to know the SST is the fact that there are 

few buoy locations in the YS.  With the lack of SST observational data, forecasters have 

a difficult time accurately predicting the SSTs in the YS. 

 The knowledge of the geography and climatic variations of the YS and the 

atmosphere throughout the region is key to understanding how the environment will drive 

the forcing necessary for sea fog formation.  In addition to those factors, it is also 

important to understand the physics behind the formation and dissipation of sea fog.   
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Figure 5.         Major currents of the YS region for summer (right) and winter  (left).          

 1, Kuroshio; 2, Kuroshio Countercurrent; 3, Tsushima Warm Current;         

 4, Yellow Sea Warm Current; 5, Taiwan Warm Current; 6, Yellow Sea  

 Coastal Current; 7, Taiwan Coastal Current; 8, Korean Coastal Current;     

 9, Yellow Sea Cold Water; and 10, Cheju Cyclonic Gyre. (From Mask and    

 O’Brien 1998)  

B.   PHYSICS OF SEA FOG AND ITS FORMATION AND DISSIPATION 

PROPERTIES 

  There has been numerous research that has focused on sea fog formation and 

dissipation.  One of the most detailed and informative resources came from a book by 

Wang in 1985, fittingly called “Sea Fog.”  The work in this field dates back to the 1940s 

and covers specific details of sea fog in and around the YS.  Through his work and 

experiences, the author classified the different forms of sea fog which develop around the 

globe (Table 2).  However, as we continue, a main focus will be on the advection sea fog 

processes. 
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1.  Sea Fog Formation Mechanisms 

  Sea fog can form through two distinct processes related to the immediate surface: 

surface evaporation and/or cooling.  The cooling process occurs under four 

circumstances: contact, radiation, advection, and cooling induced by turbulent mixing.  

Contact cooling is when warm air travels over a cooler sea surface and the heat is 

transferred from air to sea causing the air to cool. This process is normally referred to as 

turbulent sensible heat transfer.  Radiation is the process of radiative energy balance 

resulting in a net gain/loss of heat at the surface.  This process takes into account both the 

incoming solar radiation and the outgoing long wave radiation to create a net radiation 

flux resulting in heating or cooling of the ocean surface and eventually causing the 

temperature change in the lowest level of air adjacent to the surface through turbulent 

heat exchange.  Advection cooling is when cooler air moves over the area.  Finally, the 

turbulence cooling effect transpires when a warm air parcel vertically mixes with a cold 

air parcel, as if a warm air parcel advectively flows onto a cold water surface and mixes 

vertically with the cold air staying on the cold surface.  These four cooling processes do 

not occur individually, but are often working together to generate an environment 

conducive to sea fog formation (Wang 1985).     

 Basically, in order for sea fog to form the air must increase in moisture content 

and/or lower in temperature along with having the adequate amount of condensation 

nuclei available for the water molecules to attach.  Once the fog forms, the temperature of 

the fog drops are further lowered down due to radiation cooling of the fog layer and its 

boundary.  However, for advection cooling fog, not only does the radiation play a role in 

lowering the temperature of the air, but also turbulence and advection can lead to air 

temperature cooling.  These effects also help to sustain the fog layer over a long period of 

time.  Table 2 shows the breakdown of the sea fog and briefly describes the mechanisms 

required to form sea fog over various types of oceans and topographical fluctuations 

(Wang 1985).  It is clear from this table that the two main mechanisms for advection sea 

fog formations are evaporation and cooling.   
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   Types Major Cause of Formation 

S
ea

 f
o
g

 
Advection 

fog 

Advection 

cooling fog 

warm air advectively flows onto a cold sea 

surface 

Advection 

evaporation 

fog 

cold air advectively flows onto a warm sea 

surface 

Mixing fog 

Cold seasons 

mixing fog 

mixing of cold air with sea surface war-

moisture air 

Warm seasons 

mixing fog 

mixing of warm air with sea surface cold-

moist air 

Radiation 

fog 

Floating film 

radiation fog 

radiation cooling of floating film of the sea 

surface 

Salt layer 

radiation fog 

radiation cooling of the salt layer at the top 

of turbulent layer 

Ice surface 

radiation fog 
radiation cooling of ice surface 

Orographic 

fog 

Island fog 
adiabatic cooling of air in windward side of 

island 

Coastal fog fog formed in coastal regions 

Table 2.   Classification of Sea Fog (After Wang 1985) 

 All of these types of sea fog plague the oceans during various times of the years.  

However, over the YS, the main culprit for aircraft delays and traffic accidents is due to 

the advection fog process.  This type of fog forms when either warm/cold air flows on 

cold/warm sea surface, and heat transfers from the air to the sea or from sea to air, 

respectively.  This advective process is also accompanied by a transfer in both SH and 

LH between the air flowing over the sea.  For instance, when SST is less than AT, the 

SHF from air to sea dominates and causes advection cooling fog to occur.  The 

relationship of air-sea temperature difference that is optimal for advection fog formation 

is between -0.1°C and 5°C.  Therefore, the air temperature must be relatively close to the 

SST in order for enough cooling to occur for fog formation.  While on the other hand, 

when the SST is greater than air temperature the LHF is significantly enhanced and 

causes an increase in WV due to the evaporation of the sea surface water.  This fog forms 

because of the increase in WV and is referred to as advection evaporation fog (Wang 
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1985).  A study conducted by Gao et. al. 2006 showed a tendency for sea fog formation 

with a larger air/sea temperature difference and greater wind speeds.  It was explained 

that the stronger the wind shear is, the stronger the resulting mechanical turbulence will 

be.  Therefore, more heat will be transported from air to sea in the stable BL causing 

favorable environment for sea fog formation.  If the air/sea temperature difference is too 

large then sea fog formation is not as favorable, because the surface buoyancy forcing 

will generate strong turbulent mixing and hence entrainment of drier air into the BL from 

above (Gao, et. al., 2006).  In terms of the energy exchange and turbulence that occurs 

between the air-sea, it mainly occurs by the LHF rather than by SHF during an advection 

fog event.  SHF and LHF modified by the SST variations help determine the evolution of 

sea fog along with changes in the LL static stability.  For example, during an advection 

cooling fog event, an important feature of air and sea coupling happens when the LHF is 

negative prior to fog formation, which is due to condensation in the stable surface layer 

(Heo and Ha 2009).  Another form of advection fog is referred to as advection-radiation 

fog.  This type of fog occurs along the coastal region and results from the radiative 

cooling of moist air that has been advected over land from the ocean during the daytime 

hours (Gultepe et al. 2007). 

  An increase in WV may be due to the air being advected from a source region that 

has an abundant amount of moisture available and is being carried with flow to a region 

of less moisture increasing the DPT.  For example, when synoptic flow creates a scenario 

that brings a south to southwesterly wind to the YS region, the area will typically see an 

increase in RH, which will lead to the increase probability of advection cooling sea fog 

formation  (Heo and Ha 2009).  Furthermore, the research has suggested that a heavy 

frequency of sea fog of more than 50% occurs: 1) in cold water regions that have been 

generated by strong tidal mixing; 2) when DPT is over 12°C;  and 3) DPT minus SST is 

larger than 2°C (Cho et al. 2000).  For formation of advection cooling fog, not only does 

the air temperature need to drop to below the SST, but the DPT should also be at least 

equal to or higher than the SST.  If the water temperature is too high, fog formation is 

unlikely to occur.  Also, sea fog formation is considered favorable when the RH in the 

region is 90 percent or greater (Wang 1985).    
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  Considering the LWC in the environment is another critically part of the sea fog 

formation process.  In general, as the LWC increases in the air the visibility tends to 

decrease.  For instance, when LWC reaches a minimum of about 0.02 g∙m
-3

, the 

horizontal visibility in fog reaches its maximum at about 1,000 m (the upper limit of fog).  

Likewise, when the LWC increases up to .85 g∙m
-3

, the visibility reduces to about 150 m.  

Therefore, it is important to consider the amount of LWC in the air to help determine the 

magnitude of the visibility (Wang 1985).  Other considerations for the intensity of the 

visibility are the density of the fog, which includes the fog drop radius and number of fog 

drops.  This is an inverse relationship where as the number of fog drops decreases with 

increasing drop radius and vice versa.  For example, when the radius of a fog drop is 

12 µm the number of fog drops per cubic centimeter had a maximum value well above 

100, but the number of drops decreases drastically to less than 10 when the radius was 20 

µm (Wang 1985).  An additional consideration when looking into the LWC is the 

variation of LWC in sea fog versus land-based radiation fog.  Previous research shows 

that the LWC in sea fog may be as small as 0.1 g∙m
-3

 and as large as 2.0 g∙m
-3

, while the 

LWC for land fog may be as small as 0.01 g∙m
-3

 and as large as 1.0 g∙m
-3 

(Wang 1985).   

  In addition to the heat and moisture mechanisms required for advective sea fog 

formation, an elevated layer of strong thermal stratification capping the LLs is needed.  

The stable stratification or an inversion primarily occurs under high pressure systems due 

to adiabatic warming by subsidence.  This capping inversion traps the moisture in the 

LLs. Together will the cooling by radiation, condensation in the layer may occur.  Then 

when the stratification of the LL becomes neutral, the fog layer lifts to become low cloud 

(Wang 1985).  In addition, during a fog event when cooling at the surface increases 

LL stability, entrainment mixing with the air aloft is reduced.  This effect increases the 

life of the sea fog and generates a horizontal wind speed weaker at the surface.  These 

mechanisms for the formation and sustainment of advection sea fog were discussed in 

Heo and Ha (2009).  In many of the sea fog studies, the average base of the inversion 

occurred below 200–300 m, which suggests that sea fog events are fairly shallow in 

depth, but still cause much havoc throughout the aviation industry (Roach 1995). 
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2. Sea Fog Dissipation Mechanisms 

  There are a few conditions required in order for dissipation to occur: 1) loss of 

moisture by precipitation or evaporation; 2) increase in wind speed, specifically when it 

results in advection of dry air; 3) increase in air temperature; and 4) relaxed 

LL atmospheric stability. Heo and Ha (2009) found that sea fog dissipated as a result of  

increased air temperature and reduced moisture due to a decrease in the southerly wind.  

Other studies also indicated that increasing the wind in fog or introducing charged water 

droplets generated larger fog droplets and formed drizzle, which led to the dissipation of 

sea fog.  Wang (1985) considered solar radiation as a major cause of fog dissipation.  

Also, as fog moves over warmer water it will lift into stratus which may later disperse 

(Roach 1995).  Another factor which increases the probability of sea fog dissipation is the 

coastal diurnal circulation.  During the daytime, the sea breeze develops and brings warm 

and dry air aloft that originated over land.  Entrainment of the dryer air from aloft 

together with daytime shortwave radiative heating of the cloud/fog layers all promote fog 

dissipation.  Finally, as described in the formation section, sea fog is dependent on the 

thermal structure in the LL.  When there is high stability present sea fog is favorable.  

Likewise, when the LL stability disappears the fog tends to dissipate or transform into 

low cloud. Koracin et al. (2005) concluded that the formation and dissipation of sea fog 

is closely related to the stratification of air, especially  the micrometeorological structure 

of the LL.  In summary, dissipation of sea fog is governed by the complex interplay 

between advection, synoptic evolution, and development of local circulations  

C. SEASONAL SEA FOG VARIATION IN THE YELLOW SEA 

  As mentioned earlier, advective cooling sea fog can form during any time of the 

year. However, it develops most frequently during the spring and summer time when the 

AT>SST and the level of WV is the highest.  A study conducted in 2000 by Yang-Ki Cho 

shows an in-depth analysis of sea fog around the Korean Peninsula and describes the 

seasonal variation of sea fog in the YS.  Figure 6 shows the variations in sea fog rates for 

the three seas surrounding the Korean Peninsula throughout the year.  Clearly, there is a 

peak in sea fog occurrence (more than 6 days) in the summer, while the average rate of 
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occurrence of sea fog days are less than one day per month in the autumn and winter.  

The figure also shows that the most sea fog days occurs twice as frequent in the YS 

compared to the Sea of Japan to the east of the Korean Peninsula.  He concluded that the 

frequency of sea fog is highly dependent on the difference between the DPT and SST and 

when it that difference is larger than 2°C.  Also, a heavy frequency of sea fog is present 

under cold water conditions produced by strong tidal mixing, which is partially due to the 

YS’s shallowness, as described in the bathymetry section (Cho et al. 2000). 

  Another important fact to understand regarding sea fog is that unlike other types 

of fog, sea fog is capable of lasting as long as a few days to weeks at a time, as long as 

the necessary atmospheric and oceanic conditions persist.  For instance, with land-based 

radiation fog, a typical duration is on the order of hours, because of the diurnal variations 

due to surface heating and cooling more rapidly.  On the other hand, for sea fog the water 

surface has a much higher heat capacity, so there are very small modifications in the 

thermal structure throughout the day causing a slower dissipation rate in the liquid water 

over the ocean.    

 Another seasonal factor that affects the probability of sea fog formation in the YS is 

the land-sea temperature difference in the spring (Zhang et al. 2009).  Because the land 

warms much more rapidly than the sea when going into the spring season, a strong land-

sea thermal difference leads to the formation of a shallow anticyclone over the cool YS 

and northern East China Sea (ECS).  Once this shallow high pressure, and a subsequent 

LL inversion sets up, the southerly flow on the western part of the anticyclone will tend 

to advect warm, moist tropical air into the region.  As this feature continues, the 

likelihood of sea fog formation increases abruptly during the spring (Zhang et al. 2009).   

  As described in the section, there are many pieces to this fog forecast puzzle.   

Therefore, when forecasting for sea fog, it is imperative to understand the mechanisms 

required for its sustainment and all of the seasonal variations that contribute to the 

development of this challenging weather phenomena.  The next section will discuss the 

model used for this case study and the specifics of sea fog events that brought havoc to 

Kunsan AB. 
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Figure 6.         Seasonal variation of mean frequency of sea fog occurrence YS  

 (west sea), Sea of Japan (east sea), and the East China Sea (south sea) 

 (From Cho et al. 2000). 
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III. COAMPS AND COAMPS SIMULATIONS OF FOG EVENTS 

A. INTRODUCTION TO COAMPS 

  One of the many challenges that goes along with forecasting for sea fog is the 

ability to accurately depict the phenomena using forecast models.  The AF uses a non-

hydrostatic model called the WRF model which is a mesoscale numerical weather 

prediction system designed to serve two purposes, both operational and research needs.  

However, due to the difficulty in obtaining archived model data for this case study, a 

similar forecast model, COAMPS, was chosen for this simulation.  

  The COAMPS model (4.2.2 version of the model used in this simulation) was 

designed by the Naval Research Laboratory (NRL).  As the name implies, it couples both 

atmospheric and oceanic models to provide a more precise representation of the 

environment and is utilized primarily by the U.S. Navy for operational as well as research 

use.  However, this simulation only used the atmospheric portion of the model to depict 

the sea fog event due to the limited availability of the coupled model to researchers 

outside NRL.   

  The atmospheric component of COAMPS model analysis can use either low 

resolution model fields from the NOGAPS (cold start) or the most recent COAMPS 

forecast (warm start) as its first guess of the true atmosphere and use NOGAPS results for 

its boundary conditions.  The analysis also includes a three dimensional Multivariate 

Optimum Interpolation (MVOI) blend of observational data which is also assimilated 

with the models first guess field to generate the analysis (NRL 2003).   The SST is 

generated for each forecast by the NRL Coupled Ocean Data Assimilation System 

(NCODA), which applies a three-dimensional, multivariate, optimum-interpolation 

method and integrates all available ocean observations in real time, including ship, buoy, 

and satellite observations as discussed in Cummings (2005).   

 Like many other forecast models, the COAMPS atmospheric system consists of two 

major components—analysis and forecast.  The analysis, as described above, is run first 

to generate the initial and boundary conditions for the forecast model.  Then the forecast 
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performs time integrations of the numerics and physics, which then outputs prognostic 

and diagnostic fields in 3-D coordinates; x, y, and z.  In this case, sigma coordinates were 

used for the z-direction (NRL 2003).   

  A couple of the important physics parameterizations that were used in this 

simulation were the Kain-Fritsch moist convection scheme, Harshvardhan radiation 

module, a slab land surface model, modified Louis surface flux parameterization based 

on COARE scheme, and Mellor-Yamada Planetary Boundary Layer (PBL) turbulence 

parameterization. Readers are referred to COAMPS model references 

(http://www.nrlmry.navy.mil/coamps-web/web/view) and the reference for each physical 

parameterizations for details of the schemes.   

B. OBSERVATIONS OF FOG EVENTS AND CASE SELECTION 

1.  Kunsan AB METAR Observations  

   For this case study, it was first necessary to identify a particular period of time 

when sea fog was present at Kunsan AB to perform a detailed model case study with 

COAMPS.  The primary weather observation system for Kunsan AB is an automated 

system called the AN/FMQ-19 that automatically produces continuous hourly Aviation 

Routine Weather.  Reports (METARs)/Aviation Selected Special Weather Reports 

(SPECIs) and is monitored by the 8 OSS/OSW for operational conditions and data 

accuracy.  The Kunsan AB AN/FMQ-19 station is located at 35.92°N/126.62°E, 

producing  METAR/SPECI data of various weather parameters at the surface.  The 

primary weather variables that are displayed on this observation report are as follows: 

wind speed/direction, visibility, cloud cover/cloud height, present weather type, air 

temperature, DPT, and altimeter setting (AFMAN 2009).  Figure 7 shows a time series of 

visibilities for Kunsan AB between 30 March and 01 April 2011. The wind barbs are also 

displayed for the same time period.  This figure clearly shows at least three time sections 

within the time period with decreased visibility to as low as 400 m.  These time sections 

are potential sea fog events impacting Kunsan AB during the three day period.  This 

period was thus selected for COAMPS simulation and extended model data analyses.   



23 

 

 

Figure 7.    Time series analysis of Kunsan AB’s visibility and surface wind bards during 

the time period of the significant fog event from 30 March - 01 Apr 2011 

(visibility less than 1,000 m is classified as fog). 

2.  Kwangju AB (RKJJ) Upper Air Soundings 

  In addition to the local METAR observations, upper-air soundings or Skew-Ts 

were obtained from a Korean AB, Kwangju AB, situated approximately 85 km south-

southeast of Kunsan AB.  There the local weather unit sends up radiosondes every six 

hours to measure the atmosphere in the vertical to determine the environmental 

conditions in the sky directly above the base.  Figure 8 gives an example of the Skew-T 

plot from 31 March/00Z.  It shows the presence of extremely low inversion base beneath 

which the temperature and dew-point temperature are very close in magnitude.  This 

particular sounding seems to indicate saturation (and hence fog) at Kwangju AF at the 

time of measurements, which was likely the general condition of the southern Korean 

peninsula.   The low visibility observed at Kunsan AB at the same time was thus likely a 

result of fog.     



24 

 

 

Figure 8.    Sounding data for 31Mar/00Z at Kwangju AB.  Notice the shallow area of 

saturation near surface with a very strong LL inversion, which is indicative of 

fog. (After University of Wyoming at 

http://weather.uwyo.edu/upperair/sounding.html) 

3. Chilbaldo Buoy Station Measurements  

  Near surface and sea surface conditions were obtained from a buoy station in the 

YS, called Chilbaldo, approximately 200 km southwest of Kunsan AB.  Figure 9 shows 

the time series of the air temperature, SST, surface pressure, and RH measured from the 

Chilbaldo buoy for the same time period as in Figure 7.  Two time sections were 

identified where the RH is greater than 90% and the air temperature was cooler than the 

SST. As described in the previous chapter when the RH is greater than or equal to 90% 

sea fog formation is favorable.  In addition, when air temperature drops to at or below the 

SST, it is also favorable for sea fog formation.  These particular time sections are 

highlighted in Figure 9, denoting potential sea fog period in the region.   



25 

 

 

Figure 9.    Time series of the buoy data for the buoy station, Chilbaldo from 31 

Mar/00KST to 02Apr/00KST.  (The circled data shows periods of favorable 

sea fog formation.) - (After http://www.kma.go.kr/) 

4. Regional Satellite Image and Surface Analysis 

 A satellite cloud image (Figure 10) clearly indicated a sea fog event occurring 

throughout the west coast of the Korean Peninsula and encompassing a period of 

approximately two days from 31 March through 02 April.  Likewise, the analyzed surface 

chart (Figure 11), which was generated from the Republic of Korea Air Force (ROKAF), 

depicts a broad high pressure system draped across the central part of the ECS.  This 

synoptic situation lasted for a few days creating strong subsidence in the mid to lower 

layers, which led to a strong LL inversion.  In addition with the 500 millibars (mb) 

geostrophic flow from the northwest (Figure 12) and the surface flow from the south-

southwest, the wind flow exhibited a clockwise rotation with increasing height.  This 
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veering flow occurs typically with warm air advection.  Therefore, with this synoptic set-

up, warm air flowed over a cooler underlying surface, the air was cooled below its DPT 

and fog formation occurred.  This synoptic pattern did show formation conditions for sea 

fog formation.  

 In summary, based on all the local and regional observations for early spring 

2011, it was apparent that a significant low visibility event impacted the region during the 

period between 30 March to 02 April 2011 period.  This time period was the focus of 

detailed analysis in this thesis study.   

 

 

Figure 10.    Satellite image of the Korea/Japan region for 31 March/02Z (11 KST).  (After 

http://weather.is.kochi-u.ac.jp/archive-e.html). 
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Figure 11.    Analyzed surface weather chart for 31 March/00Z with surface wind 

direction (indicated by bold, black arrows) around the center of the high 

pressure system over the YS. (After ROKAF 2011) 

 
 

Figure 12.    Analyzed 500 mb weather chart for 31 March/00Z with 500 mb flow 

(indicated by a bold, black arrow) coming out of China into the YS. (After 

ROKAF 2011)  
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C. COAMPS MODEL SET-UP FOR KUNSAN FOG SIMULATIONS 

1. Model Domain  

  COAMPS model simulations were made with three-nested model domain within 

the region of interest.  The boxes in Figure 13 represent the area coverage of each 

domain.  The innermost domain was used as the primary source of data for later analyses 

with the highest grid resolution of 3 km.  Also, vertical grid spacing was created using 

sigma coordinates for 30 different levels extending from 10 m to 31,050 m above the 

terrain (NRL 2003).  However, since the fog in the YS region typically occurs only 1 km 

or less above the surface, only the lowest 11 sigma levels, with a max height of 1600 m, 

were used in the analyses.  This fine, horizontal and vertical, resolution allows for a more 

detailed representation of the atmosphere and may contain mesoscale features that are 

difficult to represent using a lower resolution model, such as in the case of Lewis (2004), 

where a 2.5 x 2.5 degree grid-resolution model output was used to analyze sea fog events.   

 

 

Figure 13.    COAMPS model domains (red boxes) and grid spacing used for sea fog case 

study. Kunsan AB, the Chilbadao buoy station, and Kwangju AB are denoted 

by the red, black, and yellow dots, respectively.  
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2. Simulation Setup and Model Output 

  Each COAMPS forecast run was made for 48-hour periods and a new forecast run 

was made every 12 hours with updated boundary conditions and the MVOI blend of 

observational data for data assimilation.  The model also ran off the coordinated universal 

time (UTC) or Zulu time (Z), which is minus nine hours to Korean Standard Time (KST).  

For the period of interest to this thesis, there were a total of six COAMPS runs, each with 

a simulation period illustrated in Figure 14. For each COAMPS run, hourly output of 

mean variables were saved including variables such as pressure, temperature, wind 

components, qv, qc, and so on.  We also outputted near surface turbulent quantities such 

as, surface sensible and latent heat fluxes, TKE and boundary layer height.       

 Because the model was initialized with new data for each forecast, initial 

adjustment time was needed for the simulations to reach consistency between the 

predicted variables and the dynamics.  This adjustment usually happens in the first 5–6 

hours of the simulation.  Also, model error can occur at the end of model runs because 

the model tends to be less accurate the further out it goes, which can occur after 17 hours 

of model simulation.  Therefore, for these analyses, the forecast results were generated 

between hour 6 an hour 17 only from each of the forecast run and pieced together to form 

a continuous time series between 30 March/06Z and 02 April/05Z.  Figure 14 shows a 

schematic of the time period from each forecast to make up the ‘best forecast’ composite 

model time series.   

 For the model output, specific variables were chosen for depicting the atmospheric 

and oceanic conditions for this sea fog event.  When examining a coastal environment it 

is essential to characterize both the atmosphere and the ocean conditions to understand 

the air-sea interaction processes involved in fog development processes.  Table 3 shows a 

list of the variables used in this study with the corresponding COAMPS nomenclature 

and whether or not it is a surface based (2-D) or a 3-D output.  Also included in the table 

are variables derived in post-processing. 
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Figure 14.     Forecast period of each of the six COAMPS simulations and the “best 

forecast” time that represents the most accurate period from each model run 

(the thick black lines). Forecast from all the 'best forecast' period from the 

time series of COAMPS simulations to be used in the analyses (30 Mar/06Z 

to 02 Apr/05Z).  

Variable units COAMPS name levels

Air Temperature* C 3D

Cloud Mixing Ratio g∙kg-1 cldmix 3D

Dewpoint Temperature* C 3D

Latent Heat Flux W∙m
-2

lahflx 2D Surface

Planetary Boundary Layer m pblzht 2D 

Potential Temperature K pottmp 3D

Relative Humidity* % 3D

Sea Surface Temperature C seatmp 2D Surface

Sensible Heat Flux W∙m-2 sehflx 2D Surface

Turbulent Kinetic Energy m
2
∙s

-2
turbke 3D

U-Component Wind m∙s
-1

uuwind 3D

V-Component Wind m∙s
-1

vvwind 3D

Water Vapor Mixing Ratio g∙kg-1 wvapor 3D

Wind Barb* kts 3D  

Table 3.   Variables used in the analyses and their corresponding units, names in 

COAMPS output, and output levels.  The * denotes variables calculated from 

other direct outputs. 
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IV. RESULTS 

A. SIMULATED FOG EVENT AND MODEL VALIDATION  

1. Simulated Fog Formation in the Model Domain 

  The model simulation produced qc as an direct output.  While this variable 

denotes the amount of cloud water in the air, it does not directly represent the presence of 

fog which is defined as visibility being less than 1 km (AFMAN 2009).  Therefore, when 

comparing cloud liquid water content (LWC) to visibility, formulations are needed to 

convert LWC to visibility limitations to determine fog.  Kunkel (1984) discussed this 

conversion through an extinction coefficient (β): 

         

 

   

      
  

where      is the normalized extinction cross section, and     is the number density for 

cloud droplets of radius ri.  Since cloud microphysics information are not always 

available in forecast models, Kunkel (1984) further provided an empirical relationship 

between the liquid water content (LWC) and the extinction coefficient (β): 

 

      β = 144.7(LWC)
 0.88 

 

where LWC is in g∙m
-3

.   This β can then be translated into visibility: 

 

      VIS= -ln(η)/β   

 

where η is the threshold of contrast normally taken as 0.02.   

 From these empirical relationships it can be determined that when LWC > 0.02  

g∙m
-3

 visibility is less than 1 km and thus can be classified as fog (Kunkel 1984).  Since 

the air density is close to 1 kg∙m
-3

, the threshold of fog for LWC at 0.02 g∙m
-3

 is 

equivalent to qc at 0.02 g∙kg
-1

, which was used as the threshold for fog identification in 

this study. 
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Figure 15.    2-D 10 m qc.  (a-f) shows qc (colored contours) at selected times to illustrate 

fog evolution from formation through dissipation in the area of interest.  The 

color bar indicates the magnitude of qc.  The black arrows show the 10 m 

wind speed and direction with the length of the arrow indicating the 

magnitude of the winds. Time of results is shown in the title of each figure.       
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 Figure 15 shows a six panel horizontal distribution of the 10 m qc.  Based on the 

discussions above, colors brighter than dark blue are equivalent to visibility less than 1 

km, or fog.  Figure 15b at 31 March/03Z is about 1 hour ahead of the satellite image in 

Figure 10.  These two figures show similar region of fog coverage, suggesting a high 

level of confidence in the model results.      

 The left panels of Figure 15 show the nighttime fog distribution while the right side 

panels show the daytime results.  From these figures, it appears that the initial fog formed 

over nighttime land surfaces only, suggesting a radiation fog type.  However, later 

simulations indicated sea fog only without significant fog over land except in the coastal 

zone.  It also appears that the fog began to dissipate (Figure 15e) as northerly wind 

increased that brought drier air into the region creating less favorable conditions for fog.  

These developments of fog at different locations will be discussed in further detail in the 

later sections.     

2. Validation of Fog Forecast at Kunsan 

  In addition to the 2-D qc plots, time series analyses were conducted over three 

specific locations.  Those locations were chosen carefully to depict the environment over 

the land, over the sea and along the coast.  Figure 16a shows the points of interest and the 

subsequent qc values for those locations during the forecast time period (Figures 16b-d).  

Notice that the Kunsan and land points (Figures 16c & d) show diurnal variations as the 

level of qc increased during the night and decreased during the day as the land warmed.  

While the ocean point (Figure 16b) shows a continuous level of relatively high qc.   

  Figure 16c shows the comparison between qc and the observed visibility (also 

presented in Figure 7) at Kunsan AB.  It is seen that the simulated high cloud water 

content corresponds well with the observed visibility lower than 1 km (the dash blue line) 

and hence provides further confidence of the simulated results regarding the presence of 

fog.  However, beyond hour 45 the correlation between the observed visibility and qc is 

low.  This discrepancy was likely due to the dominance in cloud-top radiative cooling 

maintaining the fog layer for a long period of time.  When comparing the Kunsan and 

land points time series with the visibility time series from Kunsan AB (Figure 7), there 
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are very similar characteristics in the fog at the two sites.  The qc at both Kunsan and the 

land point show diurnal variations in the fog.  This suggests that the fog had some 

interesting variations between the ocean and land surfaces.  More details from this 

simulation will be explored in further sections, however, it is important to note that the 

simulation does paint an accurate picture of the fog, other than after hour 45 when qc is 

continued over Kunsan AB.  Therefore, when proceeding with this report the model data 

will be able to represent the environment accurately.  

 

 

Figure 16.    Points of interest for the time series qc plots.  a) the location of the points.    

b) - d) the variation in qc from 30 Mar/06Z - 2 Apr/05Z at those specific 

points.  c) compares the qc for Kunsan to the surface visibility report from the 

automated sensor with dashed blue line indicating the fog threshold. 
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B.   BOUNDARY LAYER EVOLUTION LEADING TO FOG FORMATION 

In order to identify the air mass modification as it moved across the YS, column 

back trajectories were generated using COAMPS simulated wind fields to show the fog 

development from the start of the forecast time until the onset of fog at each point of 

interest.  The back trajectory takes into account the 10 m wind speed and direction to 

determine the location of the air parcel from a starting point and works backwards to 

obtain the origin of the advected air (Noone and Simmonds 1999).  This approach for 

analyzing sea fog has been used in the past.  Koracin, et al. (2005) used a model 

simulation with back trajectory analysis to study sea fog along the California coast. They 

concluded that it was crucial to investigate the formation, evolution, and dissipation of 

sea fog in a Lagrangian framework using back trajectory, both over water and land 

(Koracin et al. 2005).   

  In this study, three locations were chosen for this analysis, including one ocean 

point (point O), one land point (point L), and the central point at Kunsan AB.  The 

starting points for the trajectories were determined based on the approximate time fog 

formed at the given points.  Comparison among the three locations revealed the 

difference in land and sea surfaces that contributed to the variations of fog development 

throughout the region.  Analysis from these three points enabled for a detailed description 

of the fog/non-fog environment over the ocean and over land.  Figure 17 shows the three 

points on the map with the corresponding back trajectory, each trajectory started at the 

onset of fog of the corresponding location. The location and the time period for trajectory 

calculations are given in Table 4.    

 

Ocean (point O) Kunsan AB Land (point L)

Latitude 35.92°N 35.92°N 35.92°N 

Longitude 126.15°E 126.62°E 126.96°E

Time Period 30 March 22Z - 10Z 30 March 18Z - 06Z 30 March 15Z - 06Z

 

Table 4.   Location destination and time period for back trajectory analyses based on 

COAMPS forecast winds.  The ocean and the land points will be referred to 

as point O and L, respectively.   
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  The first, and most obvious, feature that stood out on Figure 17 were the westerly 

direction of all three trajectories, which suggested air flow of ocean origin.  In addition, 

the wind field indicated modest that averaged about 4.6 m∙s
-1

 from west-southwest.  

Analyses of various physical parameters along these trajectories are given in the 

following subsections.     

 Using the trajectories to examine the air flow prior to the fog formation at three 

locations is an important step in understanding the processes that are key in advection sea 

fog formation.  The trajectories not only tell us where the air originated and its properties 

but also show us how the air evolved along the trajectory path.  Therefore, it was 

necessary to dissect these model output variables by looking at each along its path.  For 

clear understanding, the back trajectory results will be discussed in a forward trajectory 

sense to represent the actual forward path the air took prior to the fog formation.  All 

variables showed significant variations along the trajectory.  In particular, the LHF and 

SHF showed some major differences as the air column moved from ocean to land 

surfaces.    
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Figure 17.    Back trajectory from start of fog at each point. a) point O, b) point L, c) 

Kunsan.  The arrows represent the wind vectors at 10 m above the surface at 

the start of the fog.  (After University of Melbourne at 

http://www.earthsci.unimelb.edu.au/trajectories/trajhome.htm, Noon and 

Simmonds 1999). 
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1. Coastal Ocean Location 

  Figure 18 shows a point by point map of the forward trajectory, beginning with 

the starting point of the trajectory path (red star) and ending at the point of interest 

(yellow star) when the fog began.  The other points along the path represent the data 

points every one hour as the air flowed from west to east.  The spacing of the data points 

depict the speed of the flow with larger spacing indicating stronger wind and vice versa.  

This path was used to show both the changes in the surface variables along with the 

boundary layer (BL) variables in a vertical contour plot.  An interesting observation 

regarding the first trajectory was the abrupt turn the parcel of air takes prior to fog 

formation.  This change in the wind direction was due to several possible reasons which 

will be explored later. 

 

Figure 18.     Point O - The trajectory of the air column beginning to the west (red star) 

and ending at the point of interest when the fog began (yellow star). 
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Figure 19.    Vertical cross-section plots along the trajectory ending at point O from 30 

March/10Z to 30 March/22Z.  a) qc; b) potential temperature with BL height; 

c) qv; d) TKE.  Wind barbs represent the wind speed and direction of the flow 

in knots.   

  Figure 19 shows the vertical cross-section for four variables along the path with 

wind barbs at multiple levels.  The dominate flow in the first 6 hours was westerly during 

which qv increased gradually to about 6 g∙kg
-1 

(Figure 19c) prior to the fog formation.  

The start of the fog in the YS is represented by the increase in qc (Figure 19a) 

approximately at 19Z or hour 9 from the start of the trajectory.  Simultaneously, qv 

dropped to below 5 g∙kg
-1

 making the total water (the sum of qv and qc) the same.  The 

decrease in qv is consistent throughout the simulation when the fog formed and shows the 

conversion from vapor to liquid water within the BL.   

  Through the first eight to nine hours of the trajectory, potential temperature 

(Figure 19c) of the marine atmospheric boundary layer (MABL) was fairly well mixed 
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with an increase in static stability as fog formed in the air column.  Once fog formed, the 

lower layer became stably stratified up to 100 m topped by a weakly stratified layer 

above.  The fog layer also experienced a fairly rapid decrease in temperature from 278K 

to 275K in the next 4 hours.  This decrease in temperature is likely caused by cloud-top 

radiative cooling.  Koracin, et al. (2005) showed their modeling results had identified 

radiative cooling as a major determinant of MABL cooling.  Their scale analysis showed 

that the radiative cooling term in the thermodynamic equation dominated the surface SHF 

and LHF, and entrainment terms along the modified path of the air trajectory in and 

around the fog layer (Koracin et al. 2005).  Further results from this study also showed 

the dominant effect of cloud-top radiative cooling in the simulated fog event on the 

thermal structure of the MABL. 

 Examining the surface forcings and temperature of the air in the LL marine 

environment was another important part for identifying the mechanisms responsible for 

the formation of the sea fog.  Figure 20 shows comparisons of atmospheric and oceanic 

variables that supported the development of advection fog.  As the air parcel progressed 

eastward, the 10 m air temperature began to decrease due to the heat exchange with the 

cooler SST (Figure 20c).  As fog formed, the air temperature continued to drop by 3°C in 

a 3 hour period.  This significant drop in 10 m air temperature was in part due to the 

dominate radiative cooling in the model, as described above.  In addition, according to 

Wang (1985) it is necessary for the dew-point temperature and the air temperature to be 

higher than the SST in order for condensation to occur (Wang 1985).  When comparing 

the three temperatures (Figure 20a/c) to the start of the fog (Figure 20d), it appears that 

the 10 m air and dew-point temperatures were higher than the SST right at the start of the 

fog.  However, it was not until the SST dropped to below 6°C that the dew-point 

temperature became larger than the SST.  Then within one hour of the temperatures 

meeting these conditions the fog formed.  Also, when the fog formed between 18Z and 

19Z, the 10 m dew-point and air temperature became the same, indicating saturation.  At 

that point, the qv decreased from 6 to 5 g∙kg
-1

 as the water molecules converted from gas 

to liquid form (Figure 20d).   
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  The SHF and LHF (Figure 20b) shows the SHF being slightly negative prior to 

the fog formation.  The negative surface SHF was consistent with the warmer air over the 

cooler sea surface causing the heat to be transported downward from air to sea.  Also, the 

LHF was only slightly positive prior to the fog meaning the saturated sea surface was 

supplying the air with moisture.  The weak LHF is also indicative of surface air being 

near saturation.  Then when the fog formed both the SHF and LHF began to increase 

rapidly, because the rapid decrease in air temperature due to the radiative cooling caused 

by the fog layer, SST became much warmer than the air temperature.     

  The LL wind direction appears to be a significant factor in fog formation along 

the trajectory at the point O (Figure 19d). The winds for the first part of the period were 

consistently from the west throughout the entire layer.  The TKE is weak near the surface 

and likely generated by the wind shear and not buoyancy due to the negative heat flux.     

However, about an hour prior to the fog formation the winds abruptly shifted from 

westerly to southerly from the surface up to 100 m above.  This wind shear generated 

turbulence not within the fog layer, but above fog layer where the stable stratification was 

weaker and the wind shear was moderate.  In spite of the radiative cooling at the top of 

the fog layer, it did not experience turbulence because of the strong stratification which 

inhibited TKE from developing.  As for the shifting in winds prior to the fog formation, it 

appeared that a mesoscale fog-induced pressure gradient force was generated between the 

cold, dense fog layer and the less dense air to the west.  As the air began to encounter the 

higher pressure (fog layer) the flow was diverted parallel to the fog region in driving the 

flow in a northward direction (Dalu and Baldi 2003).  This mesoscale boundary was 

consistent throughout the model simulation and is a possible reason for the 90° shift in 

the winds ahead of the fog layer. 

  Through the evolution of the trajectory, the dominant westerly wind and the 

surplus of water vapor in the area, along with high static stability and cooling MABL, 

were the contributing factors in the initial formation of the fog over the YS.  
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Figure 20.    Surface variables along the point O trajectory from 30 March/10Z to 30 

March/22Z. a) 10 m dew-point temperature and 10 m air temperature; b) LHF 

and SHF; c) SST and 10 m air temperature; d) 10 m qc and qv.   

  2. Kunsan 

  The forward trajectory of the air prior to the formation of fog over Kunsan AB 

represents both ocean and land characteristics due to its proximity to the coast.  Figure 21 

shows the 12-hour trajectory of the air that originated over the ocean and flowed west-

northwesterly until it reached the base.  It is important to note that the air parcel became 

virtually stationary immediately prior to fog formation.  This indicates that the fog region  

in a stable environment was also experiencing minimal surface winds, which is different 

from the point O trajectory which depicted a southerly flow prior to the fog.  This 

suggests that the aforementioned mesoscale pressure gradient, was not established for a 

long enough period of time to result in a modification of the flow at Kunsan AB. 
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Figure 21.    Kunsan AB - The forward trajectory path of the air beginning to the west (red 

star) and ending at the point of interest when the fog began (yellow star). 

  Similar to the fog formation over point O, the qv shows an increase prior to the 

formation with a decrease during the fog (Figure 22c).  Also, the qc (Figure 22a) shows 

an increase around hour 10 of the trajectory that represents the fog layer.  An interesting 

difference between this trajectory and the ocean one is the depth of the fog layer.  The 

pervious fog layer was only at most 100 m deep, while coastal based fog layer was twice 

as high up to 200 m.  This factor was due to a less stable environment over the land and 

the fact that this fog originally formed as a land based radiation fog.  The formation time 

occurred over night when the cooling was maximized and the increase in moisture made 

the environment susceptible for saturation. 
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Figure 22.    Contour plots along the Kunsan AB trajectory from 30 March/06Z to 30 

March/18Z.  a) qc; b) potential temperature with BL height; c) qv; d) TKE.  

Wind barbs represent the wind speed and direction of the flow in knots.  The 

height level is up to 330m. 

 The potential temperature profile (Figure 22b) leading up to the fog formation was 

weakly stratified in the evening and well mixing during the day. The stratification 

increased over the time of the trajectory, similar to the point O trajectory.  The evolution 

of the surface based variables along the Kunsan trajectory (Figure 23) has some 

similarities, but some differences compared to the point O trajectory.  A unique feature in 

these plots is the steady drop in air temperature along the path as the heat from the air 

was lost over time since  the SST was around 1°C less than the air temperature.  This heat 

loss continued until the air parcel formed fog and the air temperature dropped 2–3°C in 

the fog.   
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Figure 23.    Surface variables along the Kunsan trajectory from 30 March/06Z to 30  

March/18Z. a) 10 m dew-point temperature and 10 m air temperature; b) LHF 

and SHF; c) SST and 10 m air temperature; d) 10 m qc and qv.     

  Also, another resemblance between the two paths was that the dew-point 

temperature (Figure 23a) increased throughout the path until the air temperature dropped 

to reach the dew-point temperature leading to saturation.  All of these characteristics are 

consistent between the trajectory paths.  However, the major difference were considered 

when analyzing the LHF and SHF between the two paths.   

  With regard to the LHF and SHF shown in Figure 23b, it was apparent that the 

differences in the fluxes between the two trajectory were driven primarily by the surface 

feature, i.e., land vs. water.  In the beginning portion of each trajectory, the SHF and LHF 

were consistent, because each path originated over the ocean surface.  However, once the 

air parcel encountered the land the fluxes change significantly.  For instance, at hour 8 in 
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the Kunsan trajectory both the LHF and SHF became negative.  This occurred only when 

the trajectory passed over an island off the coast of Korea.  This island contributed to the 

negative fluxes because of the lower temperature and less moist surface on the island at 

night compared to the ocean surface.  When the parcel continued to progress westward it 

began to encounter the water again, which increased the fluxes until fog formed at hour 

10 and the LHF and SHF became negative.  Unlike the point O trajectory, when the 

parcel was in the fog, the fluxes decreased immediately after the fog formed.   

 This coastal based trajectory has similar characteristics to the air over the ocean, but 

also is driven by the difference in the land features that also play a role in the formation 

and evolution of the fog formation.   

2. Inland Location 

 Figure 24 represents the flow of the air 10 hours prior to fog formation over point 

L.  This trajectory showed very similar quality compared to the previous two trajectories.  

This air path started over the water and progressed eastward until it reached the land 

when the parcel slowed down and turned more southerly 1 to 2 hours prior to the fog 

forming.  This trajectory was also carried over less of the water than the other two paths. 

Therefore, the land influences tended to dominate the characteristics of the formation 

process responsible for fog formation.  This type of fog may not be classified as a sea 

fog, but due to its close proximity to the coastline the formation is aided by 

characteristics of the air parcel’s origin and follows the advection-radiation fog 

description in Gultepe et al. (2007). 
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Figure 24.    Point L - The forward trajectory path of the air beginning to the west (red 

star) and ending at the point of interest when the fog began (yellow star). 

 The qc plot shows a very shallow fog layer over point L in Figure 25a similar to 

point O's fog formation period.  Also, the qv plot shows an abundance of water vapor 

throughout trajectory leading up the fog.  These patterns were very consistent with the 

previous mixing ratio plots.  However, when examining the potential temperature plot 

(Figure 25b) it was evident that the stable stratification varies throughout the path.  There 

seemed to be more variation in the thermal structure in the BL during this period.  There 

was more representation of diurnal effects over the land compared to the previous figures.  

Also, when the air column reached the land, the daytime heating increased the 

temperature and created a more well mixed BL.  This fact can also be seen on the TKE 

plot (Figure 25d) where the increase in the BL was seen when the parcel was over the 

land, but the TKE began to decrease as the thermal structure became stably stratified 
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which inhibits turbulence mixing within the BL.  The wind also resembled those from 

Point O and Kunsan with steady westerly flow and increase in moisture throughout the 

time period of the trajectory.  These conditions led to a favorable environment for fog 

formation. 

 

 

Figure 25.    Contour plots along point L trajectory from 30 March/06Z to 30 March/15Z.  

a) qc; b) potential temperature with BL height; c) qv; d) TKE.  Wind barbs 

represent the wind speed and direction of the flow in knots.  The height level 

is up to 330m. 

  The three panels, in Figure 26, for the surface features are analyzed along the 

trajectory arriving at point L trajectory in comparison with those from Point O and 

Kunsan.  Note that the SST and air temperature difference is not shown in this figure as 

for the other two points of interests because of the relative short time the air column 

experienced over the water.  After looking at two similar trajectories, it became apparent 
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that the structure of the 10 m air and dew-point temperatures were consistent.  However, 

for the point L trajectory, there were some subtle differences.  For instance, the air 

temperature began to drop much before the fog formation (3–4 hours). This is likely due 

to the effects of the diurnal evolution over the land, where the land temperature dropped 

much more rapidly after sunset than it did over the sea.  Then once the temperature 

dropped 2°C, the air became saturated and fog formed.  Also, the dew-point temperature 

was 1 to 0.5 °C less than that along the Kunsan trajectory, which was likely due to 

Kunsan's closer proximity to the moisture source.    

 

 

Figure 26.    Surface variables along the Kunsan trajectory from 30 March/06Z to 30  

March/15Z. a) 10 m dew-point temperature and 10 m air temperature; b) LHF 

and SHF; c) 10 m qc and qv. Comparison of the air temperature vs. SST was 

omitted since parcel was primarily over the land.      
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  The LHF and SHF plot (Figure 26c) is also different than those from the previous 

two trajectories.  Over the first few hours of the trajectory the SHF was negative because 

SST was lower than the air temperature.  However, once the air reached land both 

variables start to increase sharply in concert with the increase in land temperature.  Then 

once the temperature began to drop during hour 5, so did the fluxes, until they dropped 

below zero and stayed there through the early part of the radiation fog.  The negative 

SHF and LHF were due to the fact that the surface layer was stable and the air was 

saturated after the fog was formed.  These variations in the SHF and LHF over the land 

vs. the water are critical factors to consider when examining whether or not to forecast 

fog, either sea or radiation fog based.   

  In conclusion, the three trajectories which were analyzed either over the ocean, 

over the land, or over both represent different aspects of the formation of fog.  A major 

difference was the contrast in the surface characteristics between the land and sea.  These 

differences drove the considerable variability in the SHF and LHF, which leads to 

variations in the fog evolution for different locations.  However, some key factors that 

were consistent over all the trajectories were the increase in moisture over time and 

distance and the decrease in temperature prior to fog formation.     

C. EVOLUTION OF FOG FORMATION AND MAINTENANCE AT   

SPECIFIC LOCATIONS 

This section examines the variations of the BL and surface features at each point 

(point O, Kunsan, and point L) to examine the dominant physical processes during the 

life cycle of fog.  All of the time series analyses cover the entire period (72 hours) during 

which fog was simulated at the respective locations.  Similar to the previous analyses, an 

examination of the near surface conditions and the vertical variations were conducted to 

gain a better understanding of the air-sea interaction that is important to the sustainment 

of the fog.  The following variables were plotted: qc, potential temperature, SST and 10 m 

air temperature comparison (for point O and Kunsan only), and surface LHF and SHF. 
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1. Coastal Ocean Location 

 The qc plot (Figure 27a) over point O shows fog forming around hour 18 and 

lasting through hour 60.  This fog underwent various modifications throughout its 

lifecycle.  Initially the fog liquid water content, qc, was relatively low, extending as high 

as 100 m.  However, as the fog persisted over point O the BL height (Figure 27b) 

dropped from near 100 m to 50 m.  The fog layer remained near 50 m for approximately 

1.5 days and was most likely sustained through fog layer top longwave radiative cooling 

and steady subsidence synoptic conditions, which helped to maintain the strong LL 

inversion.  Also, the winds prior to the fog were westerly with a weak southerly 

component.  The BL depth increased and the qc decreased after a strong, drier northerly 

wind approached the region. The fog layer dissipated after hour 60 in the northerly wind 

condition.  The potential temperature profile early in the period displays a well mixed BL 

until the fog formed with LL stratification increasing throughout the period of the fog.  

The BL became well-mixed following the dissipation of the fog layer.     

 

 

Figure 27.   The contour plots and surface plot time series analysis from 30 March/06Z - 

02 April/05Z over point O in the YS due west of Kunsan AB. a) qc; b) 

potential temperature with BL height;  c) SST/10 m air temperature; d) 

surface LHF/SHF. 
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 Further examining the SST and the 10 m air temperature (Figure 27c)  reveals  

that fog formed, when the air temperature dropped below the SST.  The air temperature 

decreased substantially in the fog layer where air temperature was about 6°C below the 

SST at the peak of the fog.  As the fog liquid water amount decreased, the air temperature 

began to rise until the fog dissipated.  As for the LHF vs. SHF (Figure 27d), their 

characteristic resembled those of the point O trajectory mentioned in the previous section.  

The LHF was positive and decreased towards zero while the SHF was negative and 

increased towards zero.    This occurs because the air is not saturated, and because the air 

temperature was warmer than the SST and decreased with time.  Once the fog formed an 

abrupt increase in LHF and SHF occurred due to the significant radiative cooling and the 

air becoming saturated.  The parallel variation in the fluxes continued and varied slightly 

throughout the life time of the fog.  The slight variations in the fluxes were driven by the 

changes in the density and depth of the fog layer with time.  When there was heavily 

dense fog, the fluxes increased, while the opposite caused a decrease in the fluxes.  As 

the fog dissipated, the LHF went even more positive due to the drying of the air relative 

to the sea and the SHF remained primarily constant due to the fact that the SST remained 

warmer than the air as cooler, drier air advected in from the north. 

2.  Kunsan Location 

The Kunsan time series analysis displays characteristics of both the marine and 

land environment.  This is clearly shown in the qc plot (Figure 28a) compared to that at 

Point O (Figure 27a), where the diurnal variations over the land led to fog burn off during 

the daytime.  The initial patch of fog during hours 12 to 24 has been characterized as 

being land based fog that developed over night in the presence of an increase in LL 

moisture and a decrease in air temperature.  However, the second patch of fog can be 

considered a sea based fog, since it occupied an area of the sea just off the coast of the 

base.  Prior to the formation of the second fog area, a period of westerly winds (sea 

breeze) dominated the BL causing conditions favorable for fog. The winds above the BL 

were also light and variable throughout the second period of fog, which was different 

than the initial fog period.  When the northerly winds increased to 15 kts and brought in 
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drier air, the fog disappeared as the cloud water were lifted above the surface.  The 

potential temperature contour plot (Figure 28b) over the coastal region shows a stable 

stratification and shallow MABL throughout much of the LL even during the day when 

no fog was present.  Only a small increase in the MABL height during the day suggests 

the strong influences from the cooler sea environment preventing significant warming 

and turbulent mixing as will be described at land point (Point L) later.   

 

 

Figure 28.    The contour plots and surface plot time series analysis from 30 March/06Z - 

02 April/05Z over Kunsan AB along the west coast of the Korean Peninsula. 

a) qc; b) potential temperature with BL height;  c) SST/10 m air temperature; 

d) surface LHF/SHF. 

 The SST and 10 m air temperature plot (Figure 28c) shows  the diurnal changes 

between day and night.  This diurnal variation had a profound influence on the fog layer 

as the fog dissipated with daytime warming.  The LHF and SHF (Figure 28d) 
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experienced significant diurnal variation, which were also similar to the land point with 

smaller magnitude.  Since Kunsan AB is situated at the coast,  it was apparently affected 

by both land and ocean environments.  As a result, when the more dense region of fog 

dominated the area on the second day, small but positive fluxes occurred.  These positive 

fluxes were a result from the surface being warmer than the near surface air.  The surface 

cooling was also minimized due to the fog cover. 

3. Inland Location 

 The qc plot (Figure 29a) associated with point L shows similarities to the Kunsan 

and point O with less time in the fog.  Each of the periods of fog experienced by the land 

base points occurred during the night hours when the temperatures were low enough due 

to radiative cooling to support fog.  The winds prior to each fog period reflect an onshore 

or westerly flow that was likely associated with the local sea breeze circulation.  This 

circulation drove in the marine environment and likely led to the advection of the sea fog.  

Within the first two fog periods the winds began southerly, but turn to easterly due to 

land breeze established at night.  During the third fog period, the winds were primarily 

out of the northwest associated with the frontal boundary from the north.  The potential 

temperature and BL height plot (Figure 29b) show a much more drastic fluctuation in 

thermal structure throughout the period.  The BL height within each of the fog periods 

were lowered to 50 m as seen in the previous BL plots.  However, during the day the LL 

turbulence due to surface heating drove the BL up to above 400 m (convective mixed 

layer).  As the temperature dropped prior to the fog formation, the stable stratification 

regenerated making it favorable for fog.   
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Figure 29.    The contour plot and surface plot time series analysis from 30 March/06Z - 

02 April/05Z over point L on the Korean Peninsula due east of Kunsan AB. 

a) qc; b) potential temperature with BL height; c) surface LHF/SHF. 

  Since point L does not encompass the YS, a SST vs. 10 m air temperature plot 

was omitted.  Therefore, when analyzing the surface variations at point L, only a 

LHF/SHF (Figure 29c) plot was constructed.  Similar to Kunsan, the LHF/SHF shows the 

diurnal variations very clearly. As the land heated up during the day, both the LHF and 

the SHF increased considerably.   

  Examining the time series at the three different points showed the variations of 

the fog through the life cycle of the event.  Point O experienced continuous;  Kunsan and 

point L showed diurnal variations of the fog indicating that the fog was driven by the 

surface fluxes and thermal structure near the surface.  The synoptic scale feature that 

influenced the consistency of the environment was a major factor in the overall 



56 

 

dissipation of the fog.  When the cooler and drier air pushed in from the north all of the 

LL clouds lifted off the surface and were eventually dissipated.  This time series analysis 

gave us a clearer understanding of the effects associated with the different surface 

features and the evolution of the fog over time.  The next section will examine a different 

aspect of the fog through a vertical cross section analysis. 

D. SPATIAL VARIABILITY IN STAGES OF FOG DEVELOPMENT 

To investigate the spatial variability in the coastal region of Kunsan AB, a straight 

path from the central YS to central ROK (Figure 30) was constructed.  In addition, 

vertical variations of boundary layer thermodynamic and surface properties were 

examined, which helped to explain the surface fluxes and LL static stability that occurred 

during the life cycle of the fog event.  The variability along this vertical cross-section was 

critical in determining the structure of the environment that led to the onset of fog and the 

eventual dissipation that occurred at the end of the simulation. The following sections 

will discuss the results from these vertical cross-section analyses to help understand the 

mechanism and air-sea modifications that contribute to advective sea fog as simulated in 

this case.   

In this analysis, the cross-sections extend a horizontal distance of over 250 km 

from 125°E to 128°E.  From this vantage point, it was possible to depict the fog 

throughout the region and to see the variations of the fog at each of the three points of 

interest described in the previous sections.  From the 72-hour model run, the following 

variables were analyzed: 1) BL qc; 2) BL potential temperature; 3) surface LHF/SHF; and 

4) SST and 10 m air temperature.  These variables were examined during three different 

times at the beginning, middle, and the end of the fog period, respectively.  This will 

show the characteristic of the environment at the critical stages of the fog development to 

include the formation, maintenance, and dissipation stages.     
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Figure 30.   Map of areas used for cross section 

1. Initial Fog Formation 

Figure 31 shows the variables during the middle of the night when the initial fog 

period occurred over the land on 30 March/18Z.  The qc plot (Figure 31a) shows the 

initial fog period extending above 330 m even though the BL height as indicated on the 

potential temperature plot (Figure 31b) was near 50 m.  The potential temperature profile 

shows a moderately stable BL setting up over the land with a weakly stable layer over the 

ocean.  The winds over the ocean at 18Z were from the west continuously advecting 

moisture over land.  About 50 km ahead of the fog region, the winds near the surface 

show a weak southerly component up to 100 m.  This suggests that the fog boundary was 

creating a pressure gradient which modified the wind flow west of the fog.  Wind within 

the fog layer switched to easterly off the land.  The easterly winds were created by the 

differential thermal structure between the cooler fog layer and the relatively warm marine 

environment.  The thermal circulation resembled a land/sea breeze circulation and caused 

the fog layer to advect off the land surface and over the water.  Therefore, as the daytime 
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heating began to burn off the land fog, the fog event transferred from a land based fog to 

a sea based fog.  Since the sea surface conditions were suitable for the fog sustainment, 

the fog became sea fog.   

 

 

Figure 31.    The four plots represent the vertical cross section (a and b) and near surface 

properties (c and d) along the line described in Figure 16 at 30 March/18Z. a) 

cloud water, qc;  b) potential temperature;  c) surface LHF/SHF;  d) SST/10 

m air temperature.  Wind barbs on (c and d) represent 10 m wind speed and 

direction.  The red star at 147 km shows the land/sea boundary along the 

cross section with land surface to the right.  SST in d) is only up to the land-

sea boundary.       

Variation of the surface LHF and SHF (Figure 31c) were dominated by the 

extremely large magnitude of negative sensible heat flux well into the land surface.  It is 

not likely that such large negative heat flux is realistic. As shown in all previous 

discussions, LHF and SHF are both small (<10 W∙m
-2

) over much of the sea.  The LHF 
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over the ocean was slightly positive, but the SHF was slightly negative due to the stable 

stratification.  These conditions tended to increase LL moisture and reduce LL 

temperature and hence generated a favorable environment for the fog to form over the 

sea.   

In addition, the decreasing air temperature (Figure 31d) and the light winds within 

the fog layer help maintain the fog layer.  Also, the decreased air temperature near the 

coast region enabled the fog to survive over the water after the shortwave radiation 

heated up the land during the early morning hours and through the day on 31 March.  

2. Sustained Sea Fog 

The plots in Figure 32 shows the environment along the cross section during the 

late afternoon hours on 31 March/09Z.  It is clear that the fog region represented by the qc 

color contours (Figure 32a) have changed not only in location but also in volume 

compared to the initial period the previous night.  In this figure, the layer of fog 

decreased in depth to only 50 m, which corresponds well with the COAMPS diagnosed 

BL height (Figure 32b).  This decrease in depth had to do with the increase in the near 

surface stability and subsidence associated with the large scale synoptic forcing.  The fog 

bank was hugging the coast line near the red star, which indicates the location of Kunsan 

AB.  However, the higher cloud water of 0.5 g∙kg
-1

 was over the sea where the conditions 

were optimal for sea fog development.   

The fact that Kunsan is directly on the coast is one of the major reasons of the 

difficulty in this forecasting challenge.  One of the major factors that determines whether 

or not the fog will impact the base is the LL winds.  In this case, the winds within the fog 

were primarily from the south, however, on the eastern edge of the fog bank the winds 

were westerly, which was a reason for the fog advecting inland slightly.  This advection 

of fog was again driven by the differential heating between the land and the sea and the 

thermal circulation that ensued.  Therefore, there appears to be a balance of forcing 

occurring between the heating of the land, which dissipates the fog and the advection of 

conditions favorable for fog onto the coast.  The balance of the two mechanisms 

(shortwave radiation and thermally driven circulation) is the driving force behind the 
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inland propagation of the fog during the day.  Potential temperature (Figure 32b) shows 

the fog layer to experience significant stable stratification.  While the nearby land surface 

encountered a decrease in stability generating turbulence in the LL and an increase in the 

BL height.  The southerly component of the wind over the sea was contributing to the 

horizontal flux of moisture and heat which was continuing to support the fog over the sea. 

 

 

Figure 32.   Same as in Figure 31, except at 31 March/09Z. 

 The near surface properties at this time also differed from those in Figure 31.  

Now that the shortwave radiation was the dominant heating source, the surface fluxes 

over the land were all positive, while the fluxes over the sea still were relatively low.  

The fluxes show a significant jump once the land surface heating effects came into play.  

This increase in the heat fluxes over the land made it difficult for the fog to form.  As for 

the SST/10 m air temperature comparison, there was an obvious decrease in temperature 



61 

 

within fog with a sharp increase in temperature over the land.  Also, the air temperature 

to the west of the fog (left of 50 km) over the ocean was larger than the SST in the region 

and was the reason why the fog has not formed there yet.  Once the contact cooling took 

effect in that region the air temperature decreased to the dew-point temperature causing 

saturation to occur and fog to form.  Now that the sea fog is well developed and the 

synoptic pattern was such that the sustainment of the fog was highly probable, let's 

consider the time period when the sea fog advected back onto the land.   

 At this point in the simulation, the fog has moved from the land to the sea and has 

moved back on to the land, however, the depth of the fog has remained shallow 

displaying similar characteristics as when it was over the sea.  Between the Figure 32 and 

33, the fog has increased in size and density as evident from the increase in the qc values 

(Figure 33a).  Also, during this time the sun set enabling the land temperatures to drop 

and the fog to form over the land.  In addition, the winds went from west-southwesterly 

in Figure 32 to east-southeasterly in Figure 33.  This land-sea breeze circulation that 

occurred allowed for the migration of the fog from land to sea to land over a 24 hour 

period.   

 The potential temperature shows a clear boundary between the cooler fog layer and 

the relatively warmer land.  Comparing the BL height from Figure 31b to Figure 33b, 

there's a clear indication that the BL height was uniform across the cross section, creating 

an BL suitable for fog formation by trapping the fog below 50 m.   

 The LHF/SHF plot (Figure 33c) is similar to the plot in Figure 31c over the land 

near 250 m, suggesting that the conditions farther inland were not affected by the MABL.  

However, over the coastal and YS region the LHF/SHF was indicative of positive surface 

fluxes suggesting a fog layer as described in Section 4.C.1.  The boundary between the 

fog and no fog occurred when the SHF dropped below negative and the LHF leveled off 

and slowly began to increase.  As for the SST/10 m air temperature there was a definitive 

demarcation between fog and non-fog areas.  The region where the air temperature was 

below the SST was where the fog layer occurred.  But when looking on the land, as the 

air temperature began to increase between 150 and 200 km the fog began to dissipate.  

Once the air temperature began to increase to a peak, there was a clear boundary between 
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fog and no fog.  As the shortwave radiation began the next day, the sea fog which 

advected inland retreated back to the sea and remained over the YS.  The next analysis 

will examine the mechanisms which led to the demise of the sea fog and eventually 

caused the event to finish by the end of 01 April 2011. 

 

 

Figure 33.   Same as in Figure 31, except for 31 March/18Z. 

3. Sea Fog Dissipation  

 The dissipation of the fog event occurred as a result of a synoptic pattern change 

due to an approaching frontal system from eastern China.  This pattern changed the LL 

environment, resulting in an increase in the BL height and a decrease in qc and eventually 

led to fog dissipation.   

 Figure 34 represents the early stage of the dissipation period and shows some key 

features associated with the ultimate end of the fog in the simulated event. The qc plot 

(Figure 34a) shows the elevated fog layer on 01 Apr/18Z.  The lifting of the fog occurred 
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during the increase in the northerly winds which were increasing on the west size of the 

cross-section from 5 to 20 kts.  With the increase in the winds, the BL height (Figure 

34b) increased from 50 m to nearly 250 m over the ocean.  In addition, the potential 

temperature profile was also indicting a well mixed LL to the west of the fog and a 

decrease in stability throughout the cloud layer.  The low temperature associated with the 

fog were advected inland with the fog layer as the near surface winds continued to 

resemble the thermal circulation that was driven by the differential heating between the 

fog layer and the land. 

 With the stronger northerly wind to the west of the fog, the LHF/SHF (Figure 

34c) show an increase in LHF in that region.  This increase in LHF is likely due to the 

advection of drier air associated with the approaching frontal system.  However, the 

increased water vapor from surface evaporation is not strong enough to balance the 

drying from advection by the northerly wind and eventually led to an environment not 

conducive for fog formation.   

 

 

Figure 34.   Same as in Figure 31, except for 01 April/18Z 
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 In summary, the lifecycle of the fog from the initial formation over the land to the 

transition to sea fog to the ultimate dissipation underwent many variations.  These 

changes in the LL environment and thermodynamic properties were well identified and 

noted in this section.  It became apparent in this simulation that the fog was controlled by 

the thermal structure over both the land and sea and the subsequent circulation driving the 

fog from land to sea and back to land.  As long as the subsidence and longwave radiative 

cooling persisted, the fog appeared to expand as the air on the leading edges continued to 

cool to the point of saturation.  As the synoptic pattern changed and cooler, drier air 

pushed into the region, the BL characteristic altered significantly, causing the fog layer to 

lift to low stratus cloud.  The simulation and subsequent figures allowed for a unique 

vantage point of the evolution and mechanism that generated the fog within the YS 

region.   

E. FOG STABILITY INDEX EVALUTION 

The FSI is a commonly used index for fog forecasting throughout the AF 

community.  The index is generated from a predetermined algorithm.  The following 

equation is used in the upper-air model soundings to determine the likelihood of fog 

formation for a given area: 

 FSI = 2(T-Td) + 2(T–T850) + W850  (1) 

where T and Td are the air and dew-point temperature at 2 m (°C), T850 is the 850 mb air 

temperature, and W850 is the 850 mb wind speed in kts.  The set of terms in equation (1), 

(T-Td), (T-T850), and W850 represent the humidity in the LL, the BL stability, and the 

wind speed above the BL at 850 mb, respectively (Holtslag et al. 2010).  The output from 

this equation generates unit-less numerical values and through many research 

experiments, thresholds were determined.  The following three thresholds describe the 

probability of fog formation: 1) high probability - FSI≤31;  2) moderate probability - 

31<FSI<55;  3) low probability - FSI ≥55.   

 Based on this FSI equation and the above thresholds, a comparison was conducted 

between the FSI values and the corresponding simulated qc values at each point of 

interest.  In addition, based on the results from a previous study by Holtslag, et al. (2010) 
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a modification to the coefficients was done which showed some improvement to the skill 

of the forecast index (Holtslag et al. 2010).  Therefore, these modifications were applied 

to this sea fog case to determine if improvements in the FSI can be made.  The results 

from this analysis are described in this section. 

 As shown in the previous result sections, the qc values generated by the model 

accurately depicted the fog areas at each point of interest.  Therefore, it is reasonable to 

consider the qc > 0.02 g∙kg
-1

 as fog.  Thus, when producing a FSI based on the model 

output data and comparing it to the qc, we should see a relatively close comparison 

between the two. 

 Figure 35 shows the time series analysis of the FSI (black lines) and the qc at each 

point of interest.  When FSI drops below 31 (dashed line), the probability for fog 

formation is high.  Also, when  qc increases, the surface visibility also decreased at the 

given point.  In other words, when the qc increases, the FSI should decrease.   Figure 35 

shows that there is a close negative correlation between the two variables.  However, it is 

noted that there are some differences.  The ocean point (Figure 35a), which is 

experiencing fog for approximately 50 hours, shows a decrease in the FSI below 31 about 

5 hours before the fog and 5 hours after the fog dissipated.  This reflects an overforecast 

in the FSI in terms of the formation and dissipation of the fog.  Also, when examining 

Kunsan and point L (Figure 35b/c), there's an obvious diurnal fluctuation occurring in the 

qc and the FSI.  However, the FSI at coastal location (Figure 35b) has a tendency of 

continuing the fog even during the day when no fog existed.  While over the point L 

(Figure 35c), the FSI increase to above the high probability threshold value of 31.  

Perhaps the near coastal influences in the humidity and stability are driving the FSI to 

remain below the threshold values, while the farther onshore location has reduced in 

humidity and stability to drive the increase in the FSI values.  Even though these 

comparisons are relatively accurate, there is some room for improvement.   

 The study conducted by Holtslag, et al., (2010) compared the skill of the FSI 

based on observations near the Netherlands with the model output data from high 

resolution MM5 data.  They also applied a correction in the coefficients to the original 

FSI algorithm to optimize the outcome of the FSI in various fog events.  From the results, 
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a modified equation was developed and showed an increase in the accuracy of the fog 

forecast.  The modification to the original FSI equation is as follows: 

     FSI = 21(T-Td) + 2(T–T850) + 0.5(W850)          (2) 

The only changes to equation (1) were the coefficients associated with each of the main 

components: LL humidity, BL stability, and 850 mb wind speed (Holtslag et al. 2010).  

The large increase in the coefficient associated with the humidity factor indicates that 

there's a larger dependence on the saturation required for fog formation.  While the 

decrease in the coefficient tied to the 850 mb winds in only a refelction of different units 

for wind speed used in the FSIs.     

 The calculated new FSI based on the modified equation is shown in Figure 36 in 

comparison with the model qc at each point of interest (Figure 36).  It was clear that there 

was improvements in accuracy of the index.  The improvement in the FSI output shown 

in Figure 36, is shown on the outer bounds of the fog regions.  For example, at point O 

(Figure 36a), there is no longer a period when the FSI indicated when the modeled qc is 

nearly zero.   Essentially, the timing of fog condition from the new FSI and from the 

cloud water matched nearly perfectly for each location.  The only location that the FSI 

has a difficult time in forecast for the fog is at Kunsan AB (Figure 36b).  Because of the 

coastal location, the model has a difficult time differentiating between the marine and 

land environments.  This is in a way expected as all boundary layer parameterizations 

assumes horizontally homogeneous boundary layers.  Nevertheless, the modified FSI 

shows promise in the realm of improving fog forecasting by the modification of the FSI 

to tighten the areas of inaccuracy.   
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Figure 35.    Time series analysis from the points of interest comparing the qc from the 

generated FSI output.  a) point O;  b) Kunsan;  c) point L.  The red dashed 

line indicates the threshold between the high and moderate  probability of 

fog.  Below the line is high likelihood and above the line is moderate to low 

probability.  
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Figure 36.    Time series analysis from the points of interest comparing the qc from the 

generated FSI output using the modified equation.  a) point O;  b) Kunsan;  c) 

point L.  The red dashed line indicates the threshold between the high and 

moderate  probability of fog.  Below the line is high likelihood and above the 

line is moderate to low probability.     
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V. CONCLUSIONS, RECOMMENDATIONS, AND FUTURE 

RESEARCH 

 The overall objective of this thesis was to explore a case study of a sea fog event 

over the YS and to identify the relevant and essential physical processes that cause sea 

fog formation and dissipation.  The intension of this analysis was to assist the 17 OWS 

and 8 OSS/OSW in finding a technique or ROT that could help reduce the inaccuracy of 

sea fog forecasts.  Based on previous research, a concise description of advection sea fog 

was completed describing the essential processes that are required for its formation, 

sustainment, and dissipation. Due to the lack of available observational data, high 

resolution COAMPS model was used to simulate the fog event.  A nested grid was 

constructed over the YS and ROK region with the innermost domain having 3 km 

horizontal grid resolution and 11 sigma levels up to 1600 m. Results analyzed in this 

study were generated from simulations from the innermost domain.   

 A comparison of the model accuracy to the observational data was made.  It was 

concluded that the model simulation represented this fog event adequately.  The only 

major discrepancy was in the duration of the fog period where the simulated fog extended 

beyond the dissipation of the observed fog.  This may have to do with the model physics 

in the radiation scheme that overestimated the cloud-top radiative cooling.  This effect 

causes significant reduction in near-surface temperature compared to the limited amount 

of observations and is considered a factor in the prolonged fog period in the model.     

 The methods used in this study were to examine the development of sea fog along 

a trajectory of an air column arriving at three separate locations: over the sea, over 

Kunsan AB (coastal region), and over land.  To follow the different air columns, back 

trajectory analyses were conducted from the initial period of fog formation at each 

location.  Along the air trajectories, contour plots of various boundary layer variables and 

surface properties were generated to show the effects of  air-sea interaction in the 

development of fog.  To investigate the sustainment of fog, a time series analysis for the 

entire model period was completed to observe the evolution of the fog layer at each 

individual location.  Additionally, spatial variability was examined through analyses of a 
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vertical cross-section cutting through each of the three points of interest at different 

stages of the life cycle of this fog event throughout the model run.  Finally, a comparison 

of the modeled qc and the widely-used FSI was completed to see how well the index 

performed in forecasting this particular event.  This analysis yielded a suggested 

modification to the original FSI formulation which ultimately led to a more accurate 

comparison between the FSI and the modeled fog event as indicated by the qc values. 

This result is consistent with those from a recent study conducted by Holtslag, et al., 

(2010).  

 This sea fog event at Kunsan had characteristics of both land based radiation fog 

and advection sea fog.  In fact, as described in chapter 2, the initial period of the fog 

formation appeared to be an advection-radiation fog, where the combination of the 

advection of warm, moist air and the radiative cooling of the land surface generated the 

fog.  Shortly after the fog over land initially formed during the night hours on 30 March, 

it started to develop over the water near the coast in regions with the nighttime presence 

of fog.  It is possible that this fog over the sea was advected due to the weak easterly 

wind in the nighttime fog region overland.  However, the sea fog extended over a much 

larger region to the west with time.  Throughout the next day, the fog was maintained 

over the sea.  Kunsan experienced fog on the following evening.  Unlike the previous 

night, the fog layer at Kunsan had about the same depth as that in the adjacent sea.  It 

appears this fog at Kunsan on the second night was part of the sea fog advected overland.  

This hypothesis is consistent with development of the sea breeze circulation discussed 

earlier.  This case study showed that due to the difference in the surface characteristics 

between the land and sea, fog is able to have a longer lifecycle over the sea.  However, 

when the land cools, the moisture remains abundant and the synoptic pattern persists, the 

fog is capable of flowing from the sea to the land.          

 Through the series of analyses, some common characteristics were uncovered for 

fog development and dissipation.  The wind speed and direction was a major contributing 

factor in the life cycle of fog.  In all of the figures, a persistent west-southwesterly flow 

dominated the region.  This wind field was a result of the LL high pressure system that 

was situated over the southern part of the YS.  This flow pattern enabled the influx of 
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warm, moist air from the tropical region in the ECS to the YS and west coast of ROK.  

The high pressure also generated an increase in the subsidence, which contributed to the 

LL inversion above the MABL.  Also, immediately after fog formation at each location 

the BL height dropped rapidly.  Although radiative cooling resulted in significant 

temperature drop in the fog layer, it does not seem to generate much turbulent mixing 

within the fog.  This is partly due to the strong static stratification in the lowest 50 m of 

the atmosphere due to strong near surface cooling.  It is also possible that the shallow fog 

layer does not allow the full development of turbulence as radiative cooling happens 

nearly within the entire layer.     

 Another important general characteristic was the air-sea interaction that was 

taking place prior to fog formation.  The surface SHF suggested heat input from the 

atmosphere to the sea surface before fog formed along most of the trajectory.  This trend 

continued until the air temperature decreased to below the SST immediately before fog 

formation.  While on the other hand, the LHF from the sea surface was primarily positive, 

indicating an upward flux of moisture which contributed to the increase in qv throughout 

the trajectory.  However, when the trajectory tracked over the land the fluxes showed 

dramatic differences in magnitude consistent large air-surface temperature differences.   

 The time series analyses at each point also showed some variations based on the 

life span of the fog.  Over the ocean the fog was sustained for over 40 hours when the 

temperature of the BL remained below the SST.  In addition, the SHF/LHF remained 

relatively low and positive to keep supplying moisture from the ocean surface.  However, 

over the land surfaces, the fog regions along with the associated fluxes displayed strong 

diurnal variations.  The daytime heating period led to SHF and LHF values above 300 

and 200 W∙m
-2

, respectively.  These large surface fluxes did not result in a deeper 

boundary layer as further inland, but they were rather effective in dissipating the fog 

during the day.   

 The dissipation of the sea fog in this study occurred because of the change in the 

large scale synoptic pattern.  A synoptic frontal boundary from the north modified the LL 

environment to the extent that it was unable to support a moist and stable BL.  The dry 
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and strong winds (> 40 kts) mixed out LL fog by lifting the BL height and evaporating 

fog liquid water.  This type of air modification is a common reason for fog dissipation in 

the region.  

 This thesis work re-evaluated the FSI for fog forecasting.  The original FSI is 

capable of producing a broad fog period, but lacks the accuracy in the starting and ending 

of the fog event.  Some of the limiting factors of the FSI were also discussed in Chapter 

4.  An attempt was made to use newly developed FSI algorithms found in the  literature.  

Refined fog forecast were done using the new FSI.   

 Even though the results from this analysis revealed some general characteristics in 

the fog formation, maintenance, and dissipation processes, they represent only a small 

sample of the sea fog events throughout the year.  A more thorough analysis is needed 

that requires similar analyses with a substantial amount of cases.  It is hence important to 

maintain an accurate and substantial data archive for fog events.  The ability to examine 

various types of sea fog events over multiple fog seasons is crucial for diagnosing the 

particular criteria for sea fog development and developing an adequate ROT.  Also, due 

to the fact that the observation system within the YS is scarce, it becomes difficult to 

evaluate ever-evolving sea surface characteristics.  Therefore, understanding the ocean 

currents and tidal influences associated with the YS can lead to a clearer picture of the 

thermal structure of the sea during the fog season. Coupled atmosphere and ocean 

simulations may provide more insight to the fog development processes as shown in 

recent study by Heo and Ha (2010), and should be the focus of future studies.   

 The modified FSI may be a useful correction to the immediate problem, but its 

application may be limited to certain conditions and regions.  Therefore, it is 

recommended to the 17 OWS to save data during all sea fog events within the YS in 

order to gain an accurate picture of all the physical processes surrounding the 

development of a plethora of fog formations in the region throughout the year.  Also, 

taking the approaches used in this thesis to examine the sea fog characteristics is an 

additional benefit for creating a long term solution to this continuous problem.   
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